马丢函数

✍ dations ◷ 2025-11-27 15:26:39 #常微分方程,特殊函数

马丢函数(法语:Équation de Mathieu)是1868年法国数学家以米里迂·拉·马丢(法语:Émile Mathieu)因研究数学物理所推得的特殊函数,下列马丢方程的解析解:

马丢方程有两个线性无关的解:

MathieuCE(n, q, x),或记为 w I ( n , q , x ) {\displaystyle w_{I}(n,q,x)} ,

MathieuSE(n, q, x).或记为 w I I ( n , q , x ) {\displaystyle w_{II}(n,q,x)} 称为基本解

马丢函数 MathieuC(a,q,z) 或 MathieuS(a,q,z) 只有一个是周期为 π {\displaystyle \pi } 2 π {\displaystyle 2\pi } 的周期解,另一个不是。

马丢函数 MathieuC(a,q,z) 和 MathieuS(a,q,z) 两者都有是周期为 2 n π {\displaystyle 2n\pi } (n≥2)的周期函数。

马丢方程的特征方程是

c o s ( π v ) = w I ( a , q , π ) {\displaystyle cos(\pi *v)=w_{I}(a,q,\pi )}

c o s ( π v ) = w I I ( b , q , π ) {\displaystyle cos(\pi *v)=w_{II}(b,q,\pi )}

对于给定的v,q, 上列特征方程给出无穷多个a、b解称为特征值。

马丢函数体特征值可展开成级数:

a 0 ( q ) = ( 1 / 2 ) z 2 + ( 7 / 128 ) z 4 ( 29 / 2304 ) z 6 + ( 68687 / 18874368 ) z 8 + O ( z 1 0 ) {\displaystyle a_{0}(q)={-(1/2)*z^{2}+(7/128)*z^{4}-(29/2304)*z^{6}+(68687/18874368)*z^{8}+O(z^{1}0)}} a 1 ( q ) = 1 + z ( 1 / 8 ) z 2 ( 1 / 64 ) z 3 ( 1 / 1536 ) z 4 + ( 11 / 36864 ) z 5 + ( 49 / 589824 ) z 6 + ( 55 / 9437184 ) z 7 ( 83 / 35389440 ) z 8 ( 12121 / 15099494400 ) z 9 + O ( z 1 0 ) {\displaystyle a_{1}(q)={1+z-(1/8)*z^{2}-(1/64)*z^{3}-(1/1536)*z^{4}+(11/36864)*z^{5}+(49/589824)*z^{6}+(55/9437184)*z^{7}-(83/35389440)*z^{8}-(12121/15099494400)*z^{9}+O(z^{1}0)}} a 2 ( q ) = 4 + ( 5 / 12 ) z 2 ( 763 / 13824 ) z 4 + ( 1002401 / 79626240 ) z 6 ( 1669068401 / 458647142400 ) z 8 + O ( z 1 0 ) {\displaystyle a_{2}(q)={4+(5/12)*z^{2}-(763/13824)*z^{4}+(1002401/79626240)*z^{6}-(1669068401/458647142400)*z^{8}+O(z^{1}0)}} a 3 ( q ) = 9 + ( 1 / 16 ) z 2 + ( 1 / 64 ) z 3 + ( 13 / 20480 ) z 4 ( 5 / 16384 ) z 5 ( 1961 / 23592960 ) z 6 ( 609 / 104857600 ) z 7 + ( 4957199 / 2113929216000 ) z 8 + ( 872713 / 1087163596800 ) z 9 + O ( z 1 0 ) {\displaystyle a_{3}(q)={9+(1/16)*z^{2}+(1/64)*z^{3}+(13/20480)*z^{4}-(5/16384)*z^{5}-(1961/23592960)*z^{6}-(609/104857600)*z^{7}+(4957199/2113929216000)*z^{8}+(872713/1087163596800)*z^{9}+O(z^{1}0)}}

b 1 ( q ) = 1 z ( 1 / 8 ) z 2 + ( 1 / 64 ) z 3 ( 1 / 1536 ) z 4 ( 11 / 36864 ) z 5 + ( 49 / 589824 ) z 6 ( 55 / 9437184 ) z 7 ( 83 / 35389440 ) z 8 + ( 12121 / 15099494400 ) z 9 + O ( z 1 0 ) {\displaystyle b_{1}(q)={1-z-(1/8)*z^{2}+(1/64)*z^{3}-(1/1536)*z^{4}-(11/36864)*z^{5}+(49/589824)*z^{6}-(55/9437184)*z^{7}-(83/35389440)*z^{8}+(12121/15099494400)*z^{9}+O(z^{1}0)}} b 2 ( q ) = 4 ( 1 / 12 ) z 2 + ( 5 / 13824 ) z 4 ( 289 / 79626240 ) z 6 + ( 21391 / 458647142400 ) z 8 + O ( z 1 0 ) {\displaystyle b_{2}(q)={4-(1/12)*z^{2}+(5/13824)*z^{4}-(289/79626240)*z^{6}+(21391/458647142400)*z^{8}+O(z^{1}0)}} b 3 ( q ) = 9 + ( 1 / 16 ) z 2 ( 1 / 64 ) z 3 + ( 13 / 20480 ) z 4 + ( 5 / 16384 ) z 5 ( 1961 / 23592960 ) z 6 + ( 609 / 104857600 ) z 7 + ( 4957199 / 2113929216000 ) z 8 ( 872713 / 1087163596800 ) z 9 + O ( z 1 0 ) {\displaystyle b_{3}(q)={9+(1/16)*z^{2}-(1/64)*z^{3}+(13/20480)*z^{4}+(5/16384)*z^{5}-(1961/23592960)*z^{6}+(609/104857600)*z^{7}+(4957199/2113929216000)*z^{8}-(872713/1087163596800)*z^{9}+O(z^{1}0)}} b 4 ( q ) = 16 + ( 1 / 30 ) z 2 ( 317 / 864000 ) z 4 + ( 10049 / 2721600000 ) z 6 ( 93824197 / 2006581248000000 ) z 8 + O ( z 1 0 ) {\displaystyle b_{4}(q)={16+(1/30)*z^{2}-(317/864000)*z^{4}+(10049/2721600000)*z^{6}-(93824197/2006581248000000)*z^{8}+O(z^{1}0)}} b 5 ( q ) = 25 + ( 1 / 48 ) z 2 + ( 11 / 774144 ) z 4 ( 1 / 147456 ) z 5 + ( 37 / 891813888 ) z 6 + ( 7 / 339738624 ) z 7 + ( 63439 / 201364441399296 ) z 8 + ( 1 / 2130840649728 ) z 9 + O ( z 1 0 ) {\displaystyle b_{5}(q)={25+(1/48)*z^{2}+(11/774144)*z^{4}-(1/147456)*z^{5}+(37/891813888)*z^{6}+(7/339738624)*z^{7}+(63439/201364441399296)*z^{8}+(1/2130840649728)*z^{9}+O(z^{1}0)}}

马丢函数ce,se的级数展开

c e 0 ( z , q ) = 1 ( 1 / 2 ) c o s ( 2 z ) q + ( 1 / 16 + ( 1 / 32 ) c o s ( 4 z ) ) q 2 + ( ( 11 / 128 ) c o s ( 2 z ) ( 1 / 1152 ) c o s ( 6 z ) ) q 3 + O ( q 4 ) {\displaystyle ce_{0}(z,q)={1-(1/2)*cos(2*z)*q+(-1/16+(1/32)*cos(4*z))*q^{2}+((11/128)*cos(2*z)-(1/1152)*cos(6*z))*q^{3}+O(q^{4})}} c e 1 ( z , q ) = c o s ( z ) ( 1 / 8 ) c o s ( 3 z ) q + ( ( 1 / 128 ) c o s ( z ) ( 1 / 64 ) c o s ( 3 z ) + ( 1 / 192 ) c o s ( 5 z ) ) q 2 + ( ( 1 / 512 ) c o s ( z ) + ( 1 / 3072 ) c o s ( 3 z ) + ( 1 / 1152 ) c o s ( 5 z ) ( 1 / 9216 ) c o s ( 7 z ) ) q 3 + O ( q 4 ) {\displaystyle ce_{1}(z,q)={cos(z)-(1/8)*cos(3*z)*q+(-(1/128)*cos(z)-(1/64)*cos(3*z)+(1/192)*cos(5*z))*q^{2}+(-(1/512)*cos(z)+(1/3072)*cos(3*z)+(1/1152)*cos(5*z)-(1/9216)*cos(7*z))*q^{3}+O(q^{4})}} c e 2 ( z , q ) = c o s ( 2 z ) + ( 1 / 4 ( 1 / 12 ) c o s ( 4 z ) ) q + ( ( 19 / 288 ) c o s ( 2 z ) + ( 1 / 384 ) c o s ( 6 z ) ) q 2 + ( 49 / 1152 + ( 11 / 4608 ) c o s ( 4 z ) ( 1 / 23040 ) c o s ( 8 z ) ) q 3 + O ( q 4 ) {\displaystyle ce_{2}(z,q)={cos(2*z)+(1/4-(1/12)*cos(4*z))*q+(-(19/288)*cos(2*z)+(1/384)*cos(6*z))*q^{2}+(-49/1152+(11/4608)*cos(4*z)-(1/23040)*cos(8*z))*q^{3}+O(q^{4})}} c e 3 ( z , q ) = c o s ( 3 z ) + ( ( 1 / 8 ) c o s ( z ) ( 1 / 16 ) c o s ( 5 z ) ) q + ( ( 5 / 512 ) c o s ( 3 z ) + ( 1 / 64 ) c o s ( z ) + ( 1 / 640 ) c o s ( 7 z ) ) q 2 + ( ( 1 / 512 ) c o s ( 3 z ) ( 1 / 4096 ) c o s ( z ) + ( 11 / 40960 ) c o s ( 5 z ) ( 1 / 46080 ) c o s ( 9 z ) ) q 3 + O ( q 4 ) {\displaystyle ce_{3}(z,q)={cos(3*z)+((1/8)*cos(z)-(1/16)*cos(5*z))*q+(-(5/512)*cos(3*z)+(1/64)*cos(z)+(1/640)*cos(7*z))*q^{2}+(-(1/512)*cos(3*z)-(1/4096)*cos(z)+(11/40960)*cos(5*z)-(1/46080)*cos(9*z))*q^{3}+O(q^{4})}}

相关

  • 诺贝尔文学奖诺贝尔文学奖(瑞典语:Nobelpriset i litteratur)是瑞典学院颁发的诺贝尔奖之一,根据诺贝尔的遗嘱,每年表彰“在文学领域创作出具理想倾向之最佳作品者”。首届诺贝尔文学奖于1901
  • 禁止生物武器公约禁止生物武器公约(英语:Biological Weapons Convention,简称BWC),又称生物与有毒武器公约(英语:Biological and Toxin Weapons Convention,简称BTWC),全名禁止发展、生产、贮存生物与
  • 圣诞节之役圣诞节之役,荷兰人与台湾原住民马卡道族之间的一次战役,发生于1635年,主要战场在今大冈山地区的北边。这场战役被视为是荷兰人奠定台湾统治权的关键。荷兰东印度公司来到台湾时
  • 敏化作用敏化作用(英语:Sensitization)是一种非联系性学习的过程,在此过程期间重复的刺激会导致越来越剧烈的反应。除了被重复的刺激本身外,敏化作用常常使得一整类的刺激都会产生更激烈
  • 湖广等处行中书省湖广等处行中书省(湖广行中书省),为直属元朝的一级行政区,简称“湖广”或“湖广省”,在当时民间多简称为鄂州行省、潭州行省、湖广行省。元世祖至元十一年(1274年)置荆湖等路行中书
  • 罗伯特·H·杰克逊罗伯特·霍沃特·杰克逊(英语:Robert Houghwout Jackson,1892年2月13日-1954年10月9日)是美国政治家、法学家。1892年出生于美国沃伦县 (宾夕法尼亚州),1912年毕业于奥尔巴尼法学
  • 核果木科核果木科又名核果茄科,只有一属唯一一种,生长在巴西的热带地区,是当地的特有种。核果木是一种高大的乔木,单叶互生;花为漏斗状,花瓣5裂;果实为核果。1981年的克朗奎斯特分类法将本
  • 该隐该隐(Cain,天主教译作加音),《圣经》人物,亚当与夏娃的长子,亚伯和塞特的哥哥。《创世记》第4章所写,他是一个农夫,亦是世界上第一个杀人犯。以下内容根据圣经的记载推测。该隐的父
  • 朱安澓汝阳康肃王朱安澓(1468年-1525年),明朝周藩第四代汝阳王,汝阳安和王朱同铚的庶长子。成化十年(1474年)五月,获赐名安澓。朱安澓初封镇国将军。正德十六年(1521年),汝阳王朱同铚以年老多
  • 秩禄处分秩禄处分(日语:ちつろくしょぶん)是明治政府在1876年(明治9年)实施的秩禄给予全面废除的政策。秩禄是给予华族或士族的家禄和给予维新功臣的赏典禄的总称。作为过渡措施采用公