分圆多项式

✍ dations ◷ 2025-12-01 11:20:16 #数论,代数

n次分圆多项式,是指多项式xn-1分解因式结果中的一个特定多项式f(x),满足f(x)=0的解都不是低于n次的形如xn-1=0的方程的解。n次的分圆多项式的根是e(2iπk/n) 而(k,n)=1

下表是几个次数较低的分圆多项式。

基础性质:分圆多项式是整系数的不可约多项式,对于xn-1的分圆多项式f(n) ,有f(n)的次数为Φ(n),Φ(n)是欧拉函数

计算:对于n为质数的分圆多项式,我们有: f ( x ) = 1 + x + x 2 + . . . + x n 1 = k = 0 n 1 x k {\displaystyle f\left(x\right)=1+x+x^{2}+...+x^{n-1}=\sum _{k=0}^{n-1}x^{k}}

相关

  • 阿尔巴尼亚语阿尔巴尼亚语(Gjuha shqipe /ˈɟuˌha ˈʃciˌpɛ/ 或 Shqip ),中文也称阿尔巴尼亚文,属印欧语系。使用者约五百万人,主要分布在阿尔巴尼亚、科索沃、马其顿以及希腊。其他东南
  • 五碳醛糖戊糖(英语:Pentose),又称为五碳糖,是一种含有5个碳原子的单糖。在1号碳上有醛基的称为五碳醛糖(戊醛糖);2号碳上有酮基的称为五碳酮糖(戊酮糖)。戊醛糖有3个手性中心,因此可能有8种旋光
  • 产后忧郁症产后抑郁症(英语:postpartum depression,PPD)也叫产后忧郁症,是妇女在分娩孩子之后由于生理和心理因素造成的抑郁症,症状有紧张、疑虑、内疚、恐惧等,极少数严重的会有绝望、离家
  • 中米沙鄢区中米沙鄢(英文:Central Visayas)是菲律宾的一个政区,被指定为第7政区(Region VII)。它是米沙鄢群岛的一部分,由4个省份所组成:保和省、宿雾省、东内格罗省、锡基霍尔省。本政区范围
  • 接缝裁剪接缝裁剪(Seam carving),是一个可以针对图像内容做正确缩放的算法(由Shai Avidan和Ariel Shamir所发表)。概念上,算法会找出一系列的接缝(seam)(接缝是在图像中最不重要的一连串像素),
  • 坂井大将坂井大将(1997年1月18日-),日本足球运动员,现效力于鸟取飞翔,司职中场。日乙联赛球队大分三神官方宣布U18青年队中场坂井大将下赛季正式升入一线队。2017年夏天,日本国青队长坂井大
  • 松下忠洋松下忠洋(1939年2月9日-2012年9月10日),日本的建设官僚、政治家。共担任五届众议院议员。历任建设省河川局砂防部部长、众议院内阁委员长、内阁府特命担当大臣(金融担当)、国民新
  • 开尔文-亥姆霍兹不稳定性开尔文-亥姆霍兹不稳定性(英语:Kelvin–Helmholtz instability,名称来自开尔文男爵和赫尔曼·冯·亥姆霍兹)是在有剪力速度(英语:Shear velocity)的连续流体内部或有速度差的两个不
  • 美国罪案故事:刺杀范思哲《美国罪案故事:刺杀范思哲》(英语:)为FX真实犯罪(英语:True crime)诗选剧《美国罪案故事》(英语:)的第二季。本季于2018年1月12日在FOX+抢先上线第1集,并安排于1月17日进行电视首播,全
  • 西蒙·布罗德金西蒙·布罗德金(英语:Simon Brodkin,1977年9月29日-),英国喜剧演员,在单口相声巡演和喜剧电视(英语:Television comedy)。西蒙因扮演令人愉悦的痞子角色李·尼尔森(英语:Lee Nelson)而著