充分统计量

✍ dations ◷ 2025-08-03 06:17:49 #统计理论,统计原则,包含证明的条目

在统计学中,一个关于一个统计模型和相关的未知参数的充分统计量是指“没有任何其他可以以同一样本中计算得出的统计量可以提供任何有关未知参数的额外讯息”。

对于统计量 = (),若数据在已知时的条件分布不依赖于参数,则称其是关于参数的充分统计量。即对任何博雷尔集,有 Pr ( x A | t , θ ) = Pr ( x A | t ) {\displaystyle {\text{Pr}}(x\in A|t,\theta )={\text{Pr}}(x\in A|t)} 的正态分布,样本均值是一个充分统计量。

若一个统计模型具有似然函数,则是的充分统计量当且仅当存在非负函数与,使得

若一个充分统计量是任何其他充分统计量的函数,则称其是一个最小充分统计量。即,统计量()是最小充分统计量当且仅当

一个有用的结论指出,当概率密度θ存在时,()是最小充分统计量当且仅当

这一结论很容易由前述费舍尔分解定理得出。

巴哈杜尔于1954年发现了一个最小充分统计量不存在的例子。 然而,在一般的条件下,最小充分统计量总是存在的。

如果至少存在一个最小充分统计量,则每个充分完全统计量都是最小充分统计量。

相关

  • 国家基本药物目录基本药物是适应基本医疗卫生需求,剂型适宜,价格合理,能够保障供应,公众可公平获得的药品。中华人民共和国国家基本药物目录是各级医疗卫生机构配备使用药品的依据。目录中的药品
  • 敦化北路敦化北路是台北市最具代表性的林荫大道之一,属双向道路,全境位于松山区,北以过民权东路的台北松山机场为起点,南接敦化南路。
  • 广州广州府,明清时广东省的府。清代隶广肇罗道。元朝时为广州路,明朝洪武十一年(1378年),改广州府。下领一州:连州(领阳山县、连山县),十五县:南海县、番禺县、顺德县、东莞县、新安县、三
  • 英国宇航系统参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):]]英国宇航系统公司(英语:BAE Systems plc)是一家总部设在
  • 皇家特权政治主题皇家特权 (英语:Royal prerogative) 是特有的权力、特权和豁免权的组合体,只在一些如英国那样由君主统治的国家承认。它是一些政府执行它们国家的行政权力的方法,由君
  • 频分多路复用频分多路复用(Frequency-division multiplexing,FDM),也叫分频多任务,是一种将多路基带信号调制到不同频率载波上再进行叠加形成一个复合信号的多路复用技术。历史上,电话网络曾使
  • 哈尔斯滕哈尔斯滕(英语当地地名与外来地名:Alstan (古诺尔斯语: ;?-1084年)。斯滕克尔王朝的开创者斯滕克尔之子。瑞典国王(1067年-1070年及与弟弟老英格共治1079年-1084年在位)。1066年,斯滕
  • 黄龙溪镇黄龙溪镇位于中国四川省成都市双流县西南部边缘,双流、彭山、仁寿三县交界处,距成都市区约40公里,是中国历史文化名镇之一,鹿溪河在此汇入锦江。黄龙溪镇拥有2100多年的历史,汉代
  • 芒德尔·罗威詹姆斯·芒德尔·罗威(英语:James Mundell Lowe,1922年4月21日-2017年12月2日),也称芒德尔·罗威(Mundell Lowe),是一名美国爵士乐吉他手,出生于密西西比州树荫镇。1975年,娶歌手贝蒂·
  • 马尔代夫国旗马尔代夫国旗启用于1965年7月25日。是一面绿地旗帜 (代表岛屿上的棕榈树),外围红框 (象征过去、现在与将来为国不惜牺牲的英雄)。中为一白新月,开口向右,象征伊斯兰信仰。1796—190