充分统计量

✍ dations ◷ 2025-12-04 23:21:10 #统计理论,统计原则,包含证明的条目

在统计学中,一个关于一个统计模型和相关的未知参数的充分统计量是指“没有任何其他可以以同一样本中计算得出的统计量可以提供任何有关未知参数的额外讯息”。

对于统计量 = (),若数据在已知时的条件分布不依赖于参数,则称其是关于参数的充分统计量。即对任何博雷尔集,有 Pr ( x A | t , θ ) = Pr ( x A | t ) {\displaystyle {\text{Pr}}(x\in A|t,\theta )={\text{Pr}}(x\in A|t)} 的正态分布,样本均值是一个充分统计量。

若一个统计模型具有似然函数,则是的充分统计量当且仅当存在非负函数与,使得

若一个充分统计量是任何其他充分统计量的函数,则称其是一个最小充分统计量。即,统计量()是最小充分统计量当且仅当

一个有用的结论指出,当概率密度θ存在时,()是最小充分统计量当且仅当

这一结论很容易由前述费舍尔分解定理得出。

巴哈杜尔于1954年发现了一个最小充分统计量不存在的例子。 然而,在一般的条件下,最小充分统计量总是存在的。

如果至少存在一个最小充分统计量,则每个充分完全统计量都是最小充分统计量。

相关

  • RTA 2近端肾小管酸中毒(Proximal renal tubular acidosis、pRTA、或"2型肾小管酸中毒(RTA 2)")是一种RTA的类型,由于近曲小管细胞从尿中再吸收"滤过的碳酸氢盐之失败所引起的,从而导
  • 亚热带地中海型气候地中海式气候,又称作地中海气候、副热带夏干气候,其分布于中纬度地区(约南北纬30至40度)的大陆西岸地区,包括地中海沿岸地区、黑海沿岸地区、美国的加利福尼亚州、澳洲西南部伯斯
  • 柴达木盆地柴达木盆地(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomol
  • 哈拉哈河诺门罕战役(苏联与蒙古称“哈拉哈河战役”、“哈拉欣河战役”,俄语:Бои на Халхин-Голе,日本称“诺门罕事件”,日语:ノモンハン事件)是大日本帝国及苏维埃联邦在远
  • 姜尚道家系列条目太公望(?-?),姜姓,吕氏,名尚,字子牙,是周文王、周武王的军师。史册记载名字有姜尚、姜望、姜牙、姜子牙、吕尚、吕望、吕涓、吕牙,别称有姜太公、吕太公、齐太公、太公、太
  • 辛普森悖论当人们尝试探究两种变量(比如新生录取率与性别)是否具有相关性的时候,会分别对之进行分组研究。然而,在分组比较中都占优势的一方,在总评中有时反而是失势的一方。该现象于20世纪
  • 威廉一世 (英格兰)威廉一世(古诺曼语: Williame I;英语:William I;法语:Guillaume Ier;1028年:3311月8日-1087年9月9日),通常被称为征服者威廉(英语:William the Conqueror),有时被称为私生子威廉(英语:Willi
  • 毛特豪森-古森集中营坐标:48°15′25″N 14°30′04″E / 48.25694°N 14.50111°E / 48.25694; 14.50111毛特豪森-古森集中营(德语:Das Konzentrationslager Mauthausen)是一个位于上奥地利毛特豪
  • 华传浩华传浩(本名华福麟,1912年-1975年12月25日),字湘卿,江苏苏州人,昆曲传字辈演员。1921年进入昆剧传习所,师承沈月泉、沈斌泉、陆寿卿,初工小生,后改为丑行。1931年,与传字辈若干人一起创
  • 章绘章绘(1416年-1476年),字尚素,号勉斋,浙江鄞县(今属宁波市海曙区)人,明朝政治人物。生于永乐十四年(1416年)丙申十月十五日。正统四年(1439年)登己未科进士。授南京兵部车驾主事。正统七年