首页 >
部分
✍ dations ◷ 2025-11-08 08:26:07 #部分
麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。这个分布可以视为一个三维矢量的大小,它的分量是独立和正态分布的,其期望值为0,标准差为
a
{displaystyle a}
。如果
X
i
{displaystyle X_{i}}
的分布为
X
∼
N
(
0
,
a
2
)
{displaystyle Xsim N(0,a^{2})}
,那么就呈麦克斯韦-玻尔兹曼分布,其参数为
a
{displaystyle a}
。麦克斯韦-玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。麦克斯韦-玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。麦克斯韦-玻尔兹曼分布可以用统计力学来推导(参见麦克斯韦-玻尔兹曼统计)。它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦-玻尔兹曼分布提供了气体状态的非常好的近似。在许多情况下(例如非弹性碰撞),这些条件不适用。例如,在电离层和空间等离子体的物理学中,特别对电子而言,重组和碰撞激发(也就是辐射过程)是重要的。如果在这个情况下应用麦克斯韦-玻尔兹曼分布,就会得到错误的结果。另外一个不适用麦克斯韦-玻尔兹曼分布的情况,就是当气体的量子热波长(英语:Thermal de Broglie wavelength)与粒子之间的距离相比不够小时,由于有显著的量子效应也不能使用麦克斯韦-玻尔兹曼分布。另外,由于它是基于非相对论的假设,因此麦克斯韦-玻尔兹曼分布不能做出分子的速度大于光速的概率为零的预言。麦克斯韦最初的推导假设了三个方向上的表现都相同,但后来在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设。现在,麦克斯韦-玻尔兹曼分布可以轻易地从能量的玻尔兹曼分布推出:其中Ni是平衡温度T时,处于状态 i 的粒子数目,具有能量 Ei 和简并度 gi ,N 是系统中的总粒子数目,k是玻尔兹曼常数。(注意有时在上面的方程中不写出简并度gi。在这个情况下,指标i将指定了一个单态,而不是具有相同能量Ei的gi的多重态。)由于速度和速率与能量有关,因此方程1可以用来推出气体的温度和分子的速度之间的关系。这个方程中的分母称为正则配分函数。下列所述的推导,与詹姆斯·克拉克·麦克斯韦描述的推导和后来由路德维希·玻尔兹曼描述的具有较少假设的推导都有很大不同。它与玻尔兹曼在1877年的探讨比较接近。对于“理想气体”(由基态的非相互作用原子所组成)的情况,所有能量都是动能的形式。宏观粒子的动能与动量的关系为:其中p2是动量矢量p = 的平方。因此,我们可以把方程1写成:其中Z是配分函数,对应于方程1中的分母。在这里,m是气体的分子质量,T是热力学温度,k是玻尔兹曼常数。这个Ni/N的分布与找到具有这些动量分量值的分子的概率密度函数fp成正比,因此:归一化常数c可以通过认识到分子具有任何动量的概率必须为1来决定。因此,方程4在所有px、py和pz上的积分必须是1。可以证明:把方程5代入方程4,得出:可以看出,这个分布是三个独立、呈正态分布的变量
p
x
{displaystyle p_{x}}
、
p
y
{displaystyle p_{y}}
和
p
z
{displaystyle p_{z}}
的乘积,其方差为
m
k
T
{displaystyle mkT}
。此外,可以看出动量的大小呈麦克斯韦-玻尔兹曼分布,其中
a
=
m
k
T
{displaystyle a={sqrt {mkT}}}
。利用p² = 2mE,以及动量的大小的分布函数(参见以下速率分布的章节),我们便得出能量的分布:由于能量与三个呈正态分布的动量分量的平方和成正比,因此这个分布是具有三个自由度的卡方分布:其中麦克斯韦-玻尔兹曼分布还可以通过把气体视为量子气体来获得。认识到速度的概率密度函数fv与动量的概率密度函数成正比:并利用p = mv,我们便得到:这就是麦克斯韦-玻尔兹曼速度分布。在速度相空间(vx, vy, vz)的一块无穷小区域内找到具有特定速度v = 的气体分子的几率为像动量一样,这个分布是三个独立、呈正态分布的变量
v
x
{displaystyle v_{x}}
、
v
y
{displaystyle v_{y}}
和
v
z
{displaystyle v_{z}}
的乘积,但方差为
k
T
m
{displaystyle {frac {kT}{m}}}
。还可以看出,对于速度矢量,麦克斯韦-玻尔兹曼速度分布是三个方向上的分布的乘积:其中一个方向上的分布为:这个分布具有正态分布的形式,其方差为
k
T
m
{displaystyle {frac {kT}{m}}}
。正如所预料的,对于静止的气体,在任何方向上的平均速度都是零。通常,我们更感兴趣于分子的速率,而不是它们的速度分量。麦克斯韦-玻尔兹曼速率分布为:其中速率v定义为:注意:在这个方程中,f(v)的单位是概率每速率,或仅仅是速率的倒数,如右图那样。由于速率是三个独立、呈正态分布的速度分量的平方之和的平方根,因此这个分布是麦克斯韦-玻尔兹曼分布。我们通常更感兴趣于粒子的平均速率,而不是它们的实际分布。平均速率、最概然速率(众数),以及均方根速率可以从麦克斯韦-玻尔兹曼分布的性质获得。虽然以上的方程给出了速率的分布,或具有特定速率的分子的比例,我们通常更感兴趣于粒子的平均速率,而不是它们的实际分布。最概然速率vp,是系统中任何分子最有可能具有的速率,对应于f(v)的最大值或众数。要把它求出来,我们计算df/dv,设它为零,然后对v求解:得出:其中R是气体常数,M = NAm是物质的摩尔质量。对于室温(300K)下的氮气(空气的主要成分),可得
v
p
=
422
{displaystyle v_{p}=422}
m/s。平均速率是速率分布的数学期望值:均方根速率vrms是速率的平方的平均值的平方根:它们具有以下的关系:马克斯威-玻尔兹曼速率分布也可直接由气体速率均向性以及分离变数的假设以微分方程计算得到指数函数之形式,微分方程解的未定数项则由粒子总数以及方均根速率和玻尔兹曼常数的气体动力论关系两者联立得解.详见外部链接.当气体越来越热时,kT趋于或超过mc2,这个相对论麦克斯韦气体的速率分布由Maxwell-Juttner分布给出::其中
β
=
v
c
,
{displaystyle beta ={frac {v}{c}},}
γ
=
1
1
−
β
2
,
{displaystyle gamma ={frac {1}{sqrt {1-{beta ^{2}}}}},}
θ
=
k
T
m
c
2
,
{displaystyle theta ={frac {kT}{mc^{2}}},}
和
K
2
{displaystyle K_{2}}
是第二类变形贝塞尔函数。
相关
- MycoBankMycoBank是一个线上数据库,记录着各种真菌的学名与形态描述。其是由荷兰乌特勒支的皇家科学院真菌生物多样性研究中心负责营运管理。每种被描述的新种真菌,在经由命名专家检视
- 本雅病毒科沙状病毒科 汉他病毒科 内罗毕病毒科(英语:Nairoviridae) 番茄斑萎病病毒科(英语:Tospoviridae) Phenuiviridae(英语:Phenuiviridae)本雅病毒目(Bunyavirales),又译为布尼亚病毒目,属于有
- NNL坐标:31°46′33.01″N 35°11′48.58″E / 31.7758361°N 35.1968278°E / 31.7758361; 35.1968278以色列国家图书馆(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-
- 大不列颠坐标:53°49′34″N 2°25′19″W / 53.826°N 2.422°W / 53.826; -2.422大不列颠岛(英语:Great Britain;苏格兰盖尔语:Breatainn Mhòr;威尔士语:Prydain Fawr;Cornish:Breten Veur
- 歌手歌手是对于歌曲和其他声乐作品演唱者的称呼,也作为职业名使用。在中国大陆则被定义为演员类的歌唱演员。那些符合关注度和知名度的歌手又被称作“歌星”。达到一定艺术造诣和
- 肠-脑轴线肠-脑轴线(gut-brain axis)是大脑和肠消化道两个器官间的沟通桥梁,而其中肠道中的菌群也对此路径贡献匪浅,三者相互影响并调控全身各种生理作用,从脑部早期发育到晚期老年的神经
- 短效胰岛素短效型胰岛素,又称为中性胰岛素、可溶性胰岛素,作用时间较短。此药物用于治疗第一型糖尿病、第二型糖尿病、妊娠性糖尿病以及各种糖尿病所引发的并发症,包括糖尿病酮酸血症、高
- 索布语索布语(serbšćina),又称文德语(Wendisch),是德国东南部少数民族索布人的语言。属于斯拉夫语族。分为两个方言群:上索布语,约55,000人,多居住于德国萨克森州;下索布语,使用者约14,000
- 肺鱼亚纲肺鱼亚纲(学名:Dipnomorpha)是硬骨鱼类的一个类群的鱼,出现在距今约4亿年前,是现存最古老的鱼类之一。肺鱼颌为自接式,平时用鳃呼吸,在干涸时可以用鳔当作肺呼吸,膘在食道处有一开口
- 转变为半胱氨酸甲硫氨酸(英语:Methionine,又称蛋氨酸),在所有后生动物中它是一种必需氨基酸。与半胱氨酸一起,甲硫氨酸是两个含硫蛋白原氨基酸之一。对人而言是唯一的含硫必需氨基酸,有L型及D型两
