1 + 2 + 4 + 8 + …

✍ dations ◷ 2025-12-11 17:45:01 #发散级数,级数,二进制算术

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。

作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。

如果以代数运算的方式来计算这个数列的和,虽然可以得到∞以及-1这两个值,但这必须在更广泛的意义中才能成立。

在历史和数学教育,1 + 2 + 4 + 8 + …是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如2 + 6 + 18 + 54 + …。

1 + 2 + 4 + 8 + … 的部分和数列是 1, 3, 7, 15, …,由于该数列发散到无穷,所以部分和数列也发散到无穷。因此任何通常求和方法得到的和将是无穷,包括切萨罗求和法和阿贝尔求和法。

另一方面,有一种广义方法使得 1 + 2 + 4 + 8 + … 的和为有限值 -1。相应的幂级数

的收敛半径为 1/2,因此它在 = 1 时不收敛。然而,这样定义的函数 在去掉点 = 1/2 后,具有到复平面唯一的解析开拓,并且具有相同的形式 (x) = 1/(1 − 2)。由于 (1) = −1,原级数 1 + 2 + 4 + 8 + … 是可求和的 (),其和为 −1,并且 -1 是级数的()和。(此标识方式是由戈弗雷·哈罗德·哈代参考莱昂哈德·欧拉在无穷级数上的研究而得)

用几乎完全相同的方法可以考虑系数为 1 的幂级数,例如

并用 = 2 代入。当然这两个级数可由关系式 = 2 等价转换。

事实上()和为1 + 2 + 4 + 8 + …分配了一个有限值,这表明广义方法不是完全符合惯例的。另一方面,他具有某些求和法可取的性质,包括稳定性和线性性质。这些后面的两个公理实际上强制级数的和为 -1,因此它令下面的操作有效:

在某种意义下, = ∞ 是方程 = 1 + 2的一个解(例如∞是黎曼球上莫比乌斯变换 → 1 + 2 的两个不动点之一)。如果某种已知的求和方法返回一个常数,不是∞,那么这是容易确定的。在这种情形下可能由方程的两边消去,得到 0 = 1 + ,所以 = −1。

相关

  • 全身性发炎反应症候群全身炎症反应综合症(Systemic inflammatory response syndrome ,SIRS)是一个影响到整个身体的炎症反应。它是身体的应激性反应,是机体应对一种感染性或非感染性因素的方式。虽
  • 挪威黄油危机挪威黄油危机(英语:Norwegian butter crisis)是由在2011年下旬期间挪威境内黄油供应短缺及价格急升的现象。这次的黄油荒归咎于天气因素、挪威政府对奶制品的入口限制以及该国
  • 多倍体细胞染色体倍性是指细胞内同源染色体的数目,只有一组最基本的称为“单套”或“单倍体”(haploid),两组备份称为“双套”或“二倍体”(diploid)。多倍体的细胞则有更多套的染色体。其中
  • 圣十字圣殿佛罗伦萨圣十字圣殿(意大利语:Basilica di Santa Croce)是方济各会在意大利佛罗伦萨的主要教堂,罗马天主教的一座次级圣殿,坐落在主教座堂东南方大约800米的圣十字广场。这个地点
  • 英国国民保健署国民医疗服务体系(英语:National Health Service,简称NHS),是对英国以下四大公型医疗系统的统称:国民医疗服务体系的经费主要来自全国中央税收,用以向公众提供一系列的医疗保健服务
  • 决明属决明属(学名:Senna)又名黄槐属,是豆科决明族的一属植物。本属与山扁豆属(Chamaecrista)过去被当作是阿勒勃属(Cassia)的同物异名,中文都被统称“决明属”,但现在这三个近缘类群已被承
  • 区位理论区位论(德语:Standortstheorie,英语:location theory),又称区位理论,是关注经济活动地理区位的理论,已成为经济地理学、区域科学和空间经济学不可或缺的组成部分。区位论要解决的是
  • 东人党东人党,是朝鲜王朝宣祖时的两班朋党。是后来士林派朋党始祖。由1575年存在至1591年。1567年宣祖即位起用新人,勋旧派不再有影响力。1575年两个士林派首领,金孝元与沈义谦开始斗
  • 语意所指(英语:signifié),在语言学上,指发出讯息者想要表示或传达给发现者或接收者的理念;亦或发现者或接收者由该语境所推断的结果。在大多数语言中,有些字往往会有多种不同涵义;因此
  • 镥的同位素镥(原子量:174.967(1))的同位素,其中有1个同位素是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。