1 + 2 + 4 + 8 + …

✍ dations ◷ 2025-12-10 05:33:23 #发散级数,级数,二进制算术

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。

作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。

如果以代数运算的方式来计算这个数列的和,虽然可以得到∞以及-1这两个值,但这必须在更广泛的意义中才能成立。

在历史和数学教育,1 + 2 + 4 + 8 + …是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如2 + 6 + 18 + 54 + …。

1 + 2 + 4 + 8 + … 的部分和数列是 1, 3, 7, 15, …,由于该数列发散到无穷,所以部分和数列也发散到无穷。因此任何通常求和方法得到的和将是无穷,包括切萨罗求和法和阿贝尔求和法。

另一方面,有一种广义方法使得 1 + 2 + 4 + 8 + … 的和为有限值 -1。相应的幂级数

的收敛半径为 1/2,因此它在 = 1 时不收敛。然而,这样定义的函数 在去掉点 = 1/2 后,具有到复平面唯一的解析开拓,并且具有相同的形式 (x) = 1/(1 − 2)。由于 (1) = −1,原级数 1 + 2 + 4 + 8 + … 是可求和的 (),其和为 −1,并且 -1 是级数的()和。(此标识方式是由戈弗雷·哈罗德·哈代参考莱昂哈德·欧拉在无穷级数上的研究而得)

用几乎完全相同的方法可以考虑系数为 1 的幂级数,例如

并用 = 2 代入。当然这两个级数可由关系式 = 2 等价转换。

事实上()和为1 + 2 + 4 + 8 + …分配了一个有限值,这表明广义方法不是完全符合惯例的。另一方面,他具有某些求和法可取的性质,包括稳定性和线性性质。这些后面的两个公理实际上强制级数的和为 -1,因此它令下面的操作有效:

在某种意义下, = ∞ 是方程 = 1 + 2的一个解(例如∞是黎曼球上莫比乌斯变换 → 1 + 2 的两个不动点之一)。如果某种已知的求和方法返回一个常数,不是∞,那么这是容易确定的。在这种情形下可能由方程的两边消去,得到 0 = 1 + ,所以 = −1。

相关

  • 鹿鼠白足鼠属(Peromyscus),哺乳纲、啮齿目、仓鼠科的一属,而与白足鼠属(球鹿鼠)同科的动物尚有里约稻鼠属(里约稻鼠)、叶耳鼠属(沙叶耳鼠)、洞鼠属(粗毛洞鼠)、大耳攀鼠属(大耳攀鼠)等之数种哺
  • 扩张新字体陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 老人学老人学(英语:gerontology,也译作老年学)是指研究人类老化的生理层面、心理层面和社会层面等等。老化泛指有机体一生中的所有变化。按其年龄,老人可以分为以下三类:老化不等于疾病,
  • 生物学的一切都没有道理,除非放在进化的光芒之下生物学的一切都没有道理,除非用演化的眼光来看。(英文:Nothing in Biology Makes Sense Except in the Light of Evolution)是演化生物学家和东正教教徒费奥多西·多布然斯基在1
  • 伊兹密尔伊兹密尔(土耳其语:İzmir;希腊语:Σμύρνη),旧称士麦那(Smyrna),位于爱琴海伊兹密尔湾东南角,为土耳其第三大城市、第二大港口。伊兹密尔为伊兹密尔省首府,全市共分9区。据2018年
  • 苏珊·海华苏珊·海华(英语:Susan Hayward,1917年6月30日-1975年3月14日),美国女演员,曾获得奥斯卡最佳女主角奖。
  • 五面体在几何学中,五面体是指由五个面组成的多面体。没有任何五面体是正五面体,也就是说找不到面由正多边形组成且每个面全等、每个角相等的正五面体,但若放宽限制,不考虑是否所有面全
  • Big Hit EntertainmentBig Hit Entertainment(韩语:빅히트엔터테인먼트)是一间韩国经纪娱乐公司。2005年由韩国知名音乐制作人兼作曲家Hitman Bang(本名:房时爀)于韩国创办,主要从事音乐制作、专辑发行、
  • 亚利桑那领地亚利桑那领地(英语:Arizona Territory)是美国历史上的一个合并建制领土,存在于1863年2月24日至1912年2月24日之间,之后升格为亚利桑那州。亚利桑那领地系新墨西哥领地西南部在南
  • 正义战争正义战争(拉丁语:jus bellum iustum,英语:Just war theory),而经常坚持自己为正义一方的经常被称作“义师”,“正义之师”。师出有名各国因政治利益缘故通常会利用宣传工具来任意解