1 + 2 + 4 + 8 + …

✍ dations ◷ 2025-12-09 17:18:55 #发散级数,级数,二进制算术

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。

作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。

如果以代数运算的方式来计算这个数列的和,虽然可以得到∞以及-1这两个值,但这必须在更广泛的意义中才能成立。

在历史和数学教育,1 + 2 + 4 + 8 + …是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如2 + 6 + 18 + 54 + …。

1 + 2 + 4 + 8 + … 的部分和数列是 1, 3, 7, 15, …,由于该数列发散到无穷,所以部分和数列也发散到无穷。因此任何通常求和方法得到的和将是无穷,包括切萨罗求和法和阿贝尔求和法。

另一方面,有一种广义方法使得 1 + 2 + 4 + 8 + … 的和为有限值 -1。相应的幂级数

的收敛半径为 1/2,因此它在 = 1 时不收敛。然而,这样定义的函数 在去掉点 = 1/2 后,具有到复平面唯一的解析开拓,并且具有相同的形式 (x) = 1/(1 − 2)。由于 (1) = −1,原级数 1 + 2 + 4 + 8 + … 是可求和的 (),其和为 −1,并且 -1 是级数的()和。(此标识方式是由戈弗雷·哈罗德·哈代参考莱昂哈德·欧拉在无穷级数上的研究而得)

用几乎完全相同的方法可以考虑系数为 1 的幂级数,例如

并用 = 2 代入。当然这两个级数可由关系式 = 2 等价转换。

事实上()和为1 + 2 + 4 + 8 + …分配了一个有限值,这表明广义方法不是完全符合惯例的。另一方面,他具有某些求和法可取的性质,包括稳定性和线性性质。这些后面的两个公理实际上强制级数的和为 -1,因此它令下面的操作有效:

在某种意义下, = ∞ 是方程 = 1 + 2的一个解(例如∞是黎曼球上莫比乌斯变换 → 1 + 2 的两个不动点之一)。如果某种已知的求和方法返回一个常数,不是∞,那么这是容易确定的。在这种情形下可能由方程的两边消去,得到 0 = 1 + ,所以 = −1。

相关

  • NAGN-乙酰葡糖胺(GlcNAc;NAG)是葡糖胺的N-乙酰衍生物,分子式C8H15NO6。NAG与NAM为组成细菌细胞壁的单体,与葡糖醛酸为透明质酸的单体。NAG也是甲壳素的聚合单体。细菌疾病 · 科莱
  • DNA修复DNA修复是细胞中经常运行的一种进程。它使基因组免受损伤和突变,因此对细胞的生存是很重要的。在人的细胞中,一般的代谢活动和环境因素(如紫外线和放射线)都能造成DNA损伤,导致每
  • 牙齿牙齿存在于很多脊椎动物(鸟类除外)的头部(或口部)内、功能用于咀嚼食物的钙化组织。肉食性动物尤其倚赖牙齿进行猎食或搏斗、御敌。牙齿的构成成分不是骨骼,而是由动物体内不同
  • 夜丘产区尼伊丘产区(法语:Côtes de Nuits),亦被广泛误译作夜丘产区,是位于法国东部勃艮第地区科多尔省中部至南部的葡萄酒产区。尼伊丘产区北起马尔萨奈拉科特,南至尼伊圣乔治,长度约20公
  • << 0 1 2 3 4 5 6 7 8 9 >>4(四)是3与5之间的自然数,是第一个合成数。
  • span style=color:white;中华民国内阁/span本表列出中华民国自1912年建国至今的历任政府首脑,包括北洋政府时代的国务总理等,国民政府时代的行政院院长,以及行宪后的行政院院长。本表所列不仅限于具正式职务者,亦包含各种
  • 澳大利亚电影澳大利亚电影(Cinema of Australia),是指由澳洲制作、发行、公开放映的电影。澳洲第一次公开放映电影的时间为1896年10月,为短片。1906年,第一部长片电影公开,片名为《凯利帮》(The
  • 门户乐队门户乐队(大门乐队)(英语:The Doors)是1965年于洛杉矶成立的美国摇滚乐队。大门乐队由主唱吉姆·莫里森(Jim Morrison)、键盘手雷·曼札克(Ray Manzarek)、鼓手约翰·丹斯莫(John Dens
  • 弗朗齐歇克矿泉村弗朗齐歇克矿泉村,德语:Franzensbad,弗朗兹巴德。原名Kaiser Franzensdorf,意为'帝国皇帝弗朗兹二世的村庄',后改名为Franzensbad。是捷克的城镇,位于该国西部,距离首府卡罗维发利
  • 武器武器是在暴力冲突中用来增加攻击效果的工具,武器被大量使用的暴力冲突也通常被称为武装冲突。武器一般会用来伤害或攻击其他人或设施,当被有效利用时一般会遵循“期望效果最大