1 + 2 + 4 + 8 + …

✍ dations ◷ 2025-11-04 19:35:33 #发散级数,级数,二进制算术

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。

作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。

如果以代数运算的方式来计算这个数列的和,虽然可以得到∞以及-1这两个值,但这必须在更广泛的意义中才能成立。

在历史和数学教育,1 + 2 + 4 + 8 + …是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如2 + 6 + 18 + 54 + …。

1 + 2 + 4 + 8 + … 的部分和数列是 1, 3, 7, 15, …,由于该数列发散到无穷,所以部分和数列也发散到无穷。因此任何通常求和方法得到的和将是无穷,包括切萨罗求和法和阿贝尔求和法。

另一方面,有一种广义方法使得 1 + 2 + 4 + 8 + … 的和为有限值 -1。相应的幂级数

的收敛半径为 1/2,因此它在 = 1 时不收敛。然而,这样定义的函数 在去掉点 = 1/2 后,具有到复平面唯一的解析开拓,并且具有相同的形式 (x) = 1/(1 − 2)。由于 (1) = −1,原级数 1 + 2 + 4 + 8 + … 是可求和的 (),其和为 −1,并且 -1 是级数的()和。(此标识方式是由戈弗雷·哈罗德·哈代参考莱昂哈德·欧拉在无穷级数上的研究而得)

用几乎完全相同的方法可以考虑系数为 1 的幂级数,例如

并用 = 2 代入。当然这两个级数可由关系式 = 2 等价转换。

事实上()和为1 + 2 + 4 + 8 + …分配了一个有限值,这表明广义方法不是完全符合惯例的。另一方面,他具有某些求和法可取的性质,包括稳定性和线性性质。这些后面的两个公理实际上强制级数的和为 -1,因此它令下面的操作有效:

在某种意义下, = ∞ 是方程 = 1 + 2的一个解(例如∞是黎曼球上莫比乌斯变换 → 1 + 2 的两个不动点之一)。如果某种已知的求和方法返回一个常数,不是∞,那么这是容易确定的。在这种情形下可能由方程的两边消去,得到 0 = 1 + ,所以 = −1。

相关

  • 肾上腺哺乳类动物中,肾上腺是呈三角形的内分泌腺体,位于肾脏上方,因而得名。其主要功能为通过合成皮质类甾醇和邻苯二酚胺(例如皮质醇和肾上腺素)来调控身体对压力产生的反应。人体中,肾
  • 大脑皮质大脑皮质(英语:cerebral cortex),又称为大脑灰质,或简称为皮质或皮层,是大脑的一个解剖结构。大脑皮层是端脑的一部分,属于脑和整个神经系统演化史上最为晚出现、功能上最为高阶的
  • 异常异常行为(或功能障碍行为)是一种行为特征,归因于那些被认为是罕见或功能障碍的病症。由社会不接受的行为组成,行为在非典型或不寻常的情况下被认为是不正常的,并且导致个体活动受
  • 数码显微镜数码显微镜(英语:Digital microscope或Computer microscope)是一种结合传统光学显微镜及视像镜头而成的显微镜,主要用于教学用途。数码显微镜的主要好处在于:传统的光学显微镜
  • 范德华力范德华力(范德华力)(Van der Waals force)在化学中指分子之间非定向的、无饱和性的、较弱的相互作用力,根据荷兰物理学家约翰内斯·范德瓦耳斯命名。范德华力是一种电性引力,但它
  • CD62选择素(英语:selectins,又译为选择蛋白,或称为表面抗原分化簇-62,即CD62)是一个细胞粘附分子CAM家族,包括有E-选择素、L 选择素、P选择素等。所有的选择素都是单链跨膜糖蛋白,与C-型
  • 剪接剪接(英语:splicing,又称拼接),是一种基因重组现象,在分子生物学中,主要是指细胞核内基因信息在转录过程中或是在转录过后的一种修饰,即将内含子移除及合并外显子——内含子与外显子
  • 房玄龄房玄龄(579年-648年8月18日),名乔,字玄龄,以字行,其神道碑则作名玄龄,齐州临淄县(今山东省淄博市临淄区)人,唐朝初年名相、凌烟阁二十四功臣之一。房玄龄曾祖房翼是北魏镇远将军、宋安
  • 夸梅·布朗夸米·詹姆斯·布朗(英语:Kwame James Brown,1982年3月10日-)为美国NBA联盟的职业篮球运动员。虽然于2001年以第一轮第一顺位(即状元)被华盛顿奇才选中,但表现货不对板,被讥为“水货
  • 霍克II战斗机柯蒂斯 F11C 苍鹰(英语:Curtiss F11C Goshawk)是1930年代美国海军双翼战斗机。此机型是柯蒂斯-莱特公司为美军制造的一系列固定翼飞机中并不太成功的一种型号。1932年4月,当寇蒂