真空电容率

✍ dations ◷ 2025-08-02 02:27:25 #电磁学,物理常数

真空电容率,又称为真空介电系数,或电常数,是一个常见于电磁学的物理常数,符号为 ϵ 0 {\displaystyle \epsilon _{0}} 。在国际单位制里,真空电容率的数值为:

真空电容率 ϵ 0 {\displaystyle \epsilon _{0}} 可以用公式定义为

其中, c 0 {\displaystyle c_{0}} 是光波传播于真空的光速, μ 0 {\displaystyle \mu _{0}} 是真空磁导率。

采用国际单位制, c 0 {\displaystyle c_{0}} 的数值定义为 299   792   458 {\displaystyle 299\ 792\ 458} 米/秒, μ 0 {\displaystyle \mu _{0}} 的数值定义为 4 π × 10 7 {\displaystyle 4\pi \times 10^{-7}} 亨利/米。因此, ϵ 0 {\displaystyle \epsilon _{0}} 的数值也是个定义值。但是,由于 π {\displaystyle \pi } 是无理数;所以, ϵ 0 {\displaystyle \epsilon _{0}} 只能近似为

这些数值都可以在2006 CODATA报告里找到。


真空电容率出现于电势移 D {\displaystyle \mathbf {D} \,\!} 的定义式:

其中, E {\displaystyle \mathbf {E} \,\!} 是电场, P {\displaystyle \mathbf {P} \,\!} 是电介质的经典电极化强度。

学术界常遇到一个错误的观点,就是认为真空电容率 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是一个可实现真空的一个物理性质。正确的观点应该为, ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是一个度量系统常数,是由国际公约发表和定义而产生的结果。 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的定义值是由光波在参考系统的光速或基准(benchmark)光速的衍生而得到的数值。这参考系统称为自由空间,被用为在其它各种介质的测量结果的比较基线。可实现真空,像外太空、超高真空(ultra high vacuum)、量子色动真空(QCD vacuum)、量子真空(quantum vacuum)等等,它们的物理性质都只是实验和理论问题,应与 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 分题而论。 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的含义和数值是一个度量衡学(metrology)问题,而不是关于可实现真空的问题。为了避免产生混淆,许多标准组织现在都倾向于采用电常数为 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的名称。

如同前面所述,真空电容率 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是一个度量系统常数。它的出现于电磁量的定义方程,主要是因为一个称为理想化的程序。只使用纯理论的推导,麦克斯韦方程组奇异地预测出,电磁波以光速传播于自由空间。继续推论这个预测,就可以给出 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的数值。若想了解为什么 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 会有这数值,必须稍微阅读一下电磁度量系统的发展史。

在以下的讲述中,请注意到我们经典物理并不特别区分“真空”和“自由空间”这两个术语。当今文献里,“真空”可能指为很多种不同的实验状况和理论实体。在阅读文献时,只有上下文可以决定术语的含意。

查尔斯·库仑和其它物理学家的实验,证明库仑定律:分开距离为 r {\displaystyle r\,\!} ,电量都是 Q {\displaystyle Q\,\!} 的两个点电荷,其相互作用于对方的力 F {\displaystyle F\,\!} ,可以用方程表达为

其中, k e {\displaystyle k_{\mathrm {e} }\,\!} 是个常数。

假若,对其它变量不加以任何约束,则 k e {\displaystyle k_{\mathrm {e} }\,\!} 可以任意地设定。对于每一个不同的 k e {\displaystyle k_{\mathrm {e} }\,\!} 数值设定, Q {\displaystyle Q\,\!} 的诠释也相随地不同。为了要避免混淆不清,每一个不同的诠释必须有不同的名称和标记符号。

厘米-克-秒静电制是一个十九世纪后期建立的标准系统。在这标准系统里,常数 k e {\displaystyle k_{\mathrm {e} }\,\!} 的数值被设定为1,电荷量的量纲被称为高斯电荷量。这样,作用力的方程变为

其中, q s {\displaystyle q_{s}\,\!} 是高斯电荷量。

假设两个点电荷的电荷量都是一个单位高斯电荷量,分隔距离是1厘米。则两个点电荷相互作用于对方的力是1 达因。那么,高斯电荷量的量纲也可以写为“达因1/2厘米”。这与国际单位制的量纲,“牛顿1/2米”,有同样的量纲。但是,高斯电荷量与国际单位制电荷量的量纲并不相同。高斯电荷量不是用库仑来测量的。

后来,科学家觉得,对于球几何案例,应该加入因子 4 π {\displaystyle 4\pi \,\!} 于库仑定律,表达方程为

其中, k e {\displaystyle k'_{\mathrm {e} }\,\!} q s {\displaystyle q'_{s}\,\!} 分别为新的常数和电荷量。

这个点子称为理想化。设定 k e = 1 {\displaystyle k'_{\mathrm {e} }=1\,\!} 。电量单位也改变了,但是,电量的量纲仍旧是“达因1/2厘米”。

下一个步骤是将电量表达为一个独自的基本物理量,标记为 q {\displaystyle q\,\!} ,将库仑定律写为它的现代形式:

很明显地,旧厘米-克-秒静电制里的电量 q s {\displaystyle q_{s}\,\!} 与新的国际标准制电量 q {\displaystyle q\,\!} 的关系式为

采用国际标准制,要求力量的单位为牛顿,距离的单位为米,电荷量的单位为工程师的实用单位,库仑,定义为1 安培的电流在1秒钟内所累积的电荷量。那么,真空电容率的量纲应该是“库仑2牛顿-1米-2”(或者,“法拉1米-1”)。

真空电容率的数值可以从麦克斯韦方程组求得。观察在真空中的麦克斯韦方程组的微分形式:

其中, E {\displaystyle \mathbf {E} \,\!} 是电场, B {\displaystyle \mathbf {B} \,\!} 是磁感应强度。

取第四个麦克斯韦方程的旋度,

将第二个麦克斯韦方程(法拉第方程)代入,则可得到

应用一个矢量恒等式,

再注意到第三个麦克斯韦方程(高斯磁定律),所以,

这样,就可以得到光波的磁场波动方程:

以同样的方式,也可得到光波的电场波动方程:

这光波传播的速度(光速 c 0 {\displaystyle c_{0}\,\!} )是

这方程表达出光速、真空电容率、真空磁导率,这三个物理量的相互关系。原则上,科学家可以选择以库仑,或是以安培为基本电磁单位。经过仔细的考量,国际单位组织决定以安培为基本电磁单位。因此, μ 0 {\displaystyle \mu _{0}\,\!} c 0 {\displaystyle c_{0}\,\!} 的数值设定了 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的数值。若想知道如何决定 μ 0 {\displaystyle \mu _{0}\,\!} 的数值,请参阅条目真空磁导率。

自由空间(free space)是一个理想的参考状态,可以趋近,但是在物理上是永远无法达到的状态。可实现真空有时候被称为部分真空(partial vacuum),意指需要超低气压,但超低气压并不是近似自由空间的唯一条件。

与经典物理内的真空不同,现今时代的物理真空意指的是真空态(vacuum state),或量子真空。这种真空绝对不是简单的空无一物的空间。因此,自由空间不再是物理真空的同义词。若想要知道更多细节,请参阅条目自由空间和真空态。

对于为了测量国际单位的数值,而在实验室制成的任何部分真空,一个很重要的问题是,部分真空是否可以被满意地视为自由空间的实现?还有,我们必须怎样修正实验的结果,才能使这些结果适用于基线?例如,为了弥补气压高于零而造成的误差,科学家可以做一些修正。

若想知道怎样才能制成优良的部分真空,请参阅条目超高真空(ultra high vacuum)和自由空间。

请注意,这些缺陷并不会影响真空电容率 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 的意义或数值。 ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是个定义值,是由国际标准组织,通过光速和真空磁导率的定义值而衍生的。

相关

  • 种群生态学种群生态学(英语:Population ecology)是生态学的一个子领域,处理物种种群的动态变化及其与自然环境的相互作用。种群生态学研究种群的种群规模(英语:population size)随时间和空间
  • 生态栖位生态位(Ecological niche),又称小生境、生态区位、生态栖位或是生态龛位,生态位是一个物种所处的环境以及其本身生活习性的总称。每个物种都有自己独特的生态位,借以跟其他物种作
  • 布基球巴克明斯特富勒烯(英语:Buckminsterfullerene),分子式C60,是富勒烯家族的一种,球状分子,是最容易制备的一种,1985年英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理察·斯莫利
  • 呼吸调节器潜水用呼吸调节器(Diving Regulator)可将压缩气瓶内的气体调整气压后输送至各个不同的设备,用于潜水员呼吸或是对潜水装备进行充气。其分为一级调节(First Stage)及二级调节(Seco
  • 地质学时间表地质年代是用来描述地球历史事件的时间单位,通常在地质学和考古学中使用。地质年代共分为六个时间单位,从大到小依次是是宙/元(eon)、代(era)、纪(period)、世(epoch)、期(age)、时 (chron
  • 穿龙薯蓣穿龙薯蓣(学名:)为薯蓣科薯蓣属的植物。多年生缠绕藤本,根状茎横生呈长圆柱形。卵形至阔卵形叶子互生,具长柄,3~5浅裂,基部为心形。夏季开花,雌雄异株,雄花序呈穗状,黄绿色小花,雌花序单
  • 老圣尼古拉堂坐标:50°06′36″N 8°40′56″E / 50.11000°N 8.68222°E / 50.11000; 8.68222老圣尼古拉堂 (德语:) 是德国法兰克福的一座路德宗教堂,位于法兰克福老城的罗马广场,靠近法兰
  • 拉蒙·卡斯蒂略拉蒙·卡斯蒂略·巴里奥努埃沃(Ramón S. Castillo Barrionuevo,1873年11月20日-1944年10月10日),阿根廷总统(1942-1943)。卡斯蒂略博士从1938年到1942年担任阿根廷的副总统,从194
  • 林启万林启万(英语:Chii-Wann Lin),美国凯斯西储大学医学工程博士博士,目前为国立台湾大学医学工程研究所教授、国立台湾大学应用力学研究所教授、国立台湾大学电机工程学系教授、工业
  • 九尺镇九尺镇,是中华人民共和国四川省成都市彭州市下辖的一个乡镇级行政单位。2019年12月,撤销升平镇,将其所属行政区域划归九尺镇管辖,九尺镇人民政府驻兴隆街114号。九尺镇下辖以下