母函数

✍ dations ◷ 2025-08-14 14:21:06 #序列,组合数学,概率论

在数学中,某个序列 ( a n ) n N {\displaystyle (a_{n})_{n\in \mathbb {N} }} 的形式幂级数。对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个的值都存在。

母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。

注意母函数本身并不是一个从某个定义域射到某个上域的函数,名字中的“函数”只是出于历史原因而保留。

瑞士数学家雅各布·伯努利在考虑“当投掷n粒骰子时,加起来点数总和等于m的可能方式的数目”这个问题时首先使用了母函数方法,并得出可能的数目是 ( x + x 2 + x 3 + x 4 + x 5 + x 6 ) n {\displaystyle (x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6})^{n}} 从1 而不是0 开始。

关于算术函数 : f ( n ) {\displaystyle f(n)} p {\displaystyle p} 的贝尔级数是:

狄利克雷级数经常被用作母函数,尽管实际上狄利克雷级数并不是严格意义上的形式幂级数。序列 ( a n ) n N {\displaystyle (a_{n})_{n\in \mathbb {N} }} 的狄利克雷级数母函数是:

a n {\displaystyle a_{n}} 是积性函数时狄利克雷级数比较有用,因为这时的母函数可以写成一系列贝尔级数的欧拉积:

如果 a n {\displaystyle a_{n}} 是狄利克雷特征,那么它对应的狄利克雷级数母函数被称为狄利克雷L函数。

n = 0 x n = 1 1 x {\displaystyle \displaystyle \sum _{n=0}^{\infty }x^{n}={\frac {1}{1-x}}} 用于等比数列求和或推导级数 n = 0 n m x n {\displaystyle \displaystyle \sum _{n=0}^{\infty }n^{m}x^{n}}

n = 0 ( n + k k ) x n = 1 ( 1 x ) k + 1 {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\binom {n+k}{k}}x^{n}={\frac {1}{(1-x)^{k+1}}}} 用于求解一次不定方程的解数,类似隔板法。

对于非负整数 x 1 , x 2 , . . . , x k {\displaystyle x_{1},x_{2},...,x_{k}} x 1 + x 2 + . . . + x k = n {\displaystyle x_{1}+x_{2}+...+x_{k}=n} ( n + k 1 k 1 ) {\displaystyle {\binom {n+k-1}{k-1}}} 个解:

对于非负整数 x 1 , x 2 , . . . , x k {\displaystyle x_{1},x_{2},...,x_{k}} x 1 + 2 x 2 + 2 x 3 = m {\displaystyle x_{1}+2x_{2}+2x_{3}=m} ( + 2 2 ) {\displaystyle {\binom {+2}{2}}} 个解:

相关

  • 拟寄生物拟寄生物(Parasitoid)也称类寄生生物或捕食寄生生物,是指幼虫期寄生宿主体内,后期将宿主杀死,成虫营自由生活的生物,成虫多半会利用产卵管将卵注入至宿主体内。“拟寄生”是一种介
  • 外消旋混合物外消旋混合物(英语:racemic mixture、racemate,或称为 外消旋体)是等物质的量的一对对映体混合后得到的组成物。第一个制得的外消旋体是路易·巴斯德制得的酒石酸的外消旋混合物
  • 麻布麻布可以指:
  • In vitro是拉丁语中“在玻璃里”的意思,意指进行或发生于试管内的实验与实验技术。更广义的意思,则指活生物体之外的环境中的操作。常见的例子是人工受精。在细胞生物学等领域中,由于此
  • 美国空军研究实验室美国空军研究实验室(Air Force Research Laboratory, AFRL)是隶属于美国空军装备司令部的一个科研机构,致力于领导空军作战技术的研究与发展、空军科技计划的规划与执行以及为
  • 兰陵剧坊兰陵剧坊,创立于1980年,是台湾第一个业余的实验小剧场剧团,前身为耕莘实验剧场,创团团长为金士杰,艺术指导为吴静吉。以现代话剧演出为主,为台湾小剧场运动的主要推动者,兰陵剧坊在
  • 杰恩·曼斯菲尔德杰恩·曼斯菲尔德(英语:Jayne Mansfield,1933年4月19日-1967年6月29日)是一位美国女演员,活跃在百老汇和好莱坞。她在20世纪的1950年代,是美国金发性感象征之一。曼斯菲尔德曾主演
  • 神探加杰特G型神探(Inspector Gadget),又译“奇探加杰特”,或是“神探万事通”(港译:万能探长),是一部1983年9月10日播出第1季的卡通。影集由美国DiC Entertainment公司制作。后来在1995年出版
  • 亚瑟·贝尔宁亚瑟·贝尔宁(挪威语:Arthur Berning,1987年9月11日-)是一位挪威演员,他于该国罗加兰郡斯塔万格出生。亚瑟在2008年于改编电影“一个爱英韦的男人”(Mannen som elsket Yngve)中首次
  • 股本股本(英语:Share capital,或capital stock),又称股份,指股票投资人用现金购买到的公司股东权益。在会计上,股本等于股票面额乘上股票发行总额。发行上市时,若股票每股价格高于面额,称