良基关系

✍ dations ◷ 2025-12-09 17:31:31 #良基性,数学关系

在数学中,类 上的一个二元关系 被称为是良基的,当且仅当所有 的非空子集都有一个 -极小元;就是说,对 的每一个非空子集 ,存在一个 中的元素 使得对于所有 中的 ,二元组 (,) 都不在 中。

等价的说,假定某种选择公理,一个二元关系称为是良基的,当且仅当它不包含可数的无穷降链,也就是说不存在 的元素的无穷序列 0, 1, 2, ...使得对所有的自然数 有着 +1 n

在序理论中,一个偏序关系称为是良基的,当且仅当它对应的严格偏序是良基的。如果这个序还是全序,那么此时称这个序为良序。

在集合论中,一个集合 称为是一个良基集合,如果集成员关系在 的传递闭包上是良基的。策梅洛-弗兰克尔集合论中的正则公理,就是断言所有的集合都是良基的。

良基关系之所以引人关注的一个重要原因是因为超限归纳法的一个版本可以应用到它上面。(, ) 是良基关系,并且 P() 是 的元素的某种属性,你期望 P() 对 的所有元素都成立,那么良基关系有能力做到这一点:

和归纳法类似,良基关系可以支持通过超限递归来构造对象。令 (, ) 是一个良基的二元关系, 为一个函数,且对所有的 和 上的每一个偏函数 有 赋值于一个对象 (, ),那么存在唯一的一个函数 满足对任意的 ,

这就是说,如果我们想构造一个 上的函数 ,我们可以通过满足 的 () 的值来定义 ()。

最为一个例子,考虑一个良基关系 (N, ),此处 N 为自然数集合,且 是后继函数 → +1 的图像。 上的归纳就是通常的数学归纳法,而 上的递归给出了原始递归。如果我们考虑序关系 (N, <),我们就得到一个完全归纳法和一个(course-of-values recursion)。命题 (N, <) 是良基的也被称为良序原理。

还有其他一些令人感兴趣的良基归纳的例子。当良基关系是通常的序数上的序关系,那么对应的归纳法是超限归纳法;当良基集合是递归定义的数据结构,那么对应的归纳法称为结构归纳法;当良基关系是全类上的集合成员关系,对应的归纳法称为∈-归纳法。请参阅相关主题的论文来获得更多的细节。

下面给出一些是良基关系但不是全序关系的例子:

如果 (, <) 是良基关系并且 是 中的一个元素,那么以 为始的降链都是有限长的,但是这不意味着它们的长度必定是有界的。请考虑下面的例子:

令 为全体正整数和一个新元素 ω 的并,ω 比任何整数都要大。这样 是一个良基集合,但是存在以 ω 为始的降链其长度可以任意(有限的)大:对任意的 n,链 ω, -1, -2, ..., 2, 1 的长度为 n。

Mostowski崩塌引理蕴涵集合成员关系是一个普遍(universal)的良基关系:对任何类 上的类集的(set-like)良基关系 ,存在一个类 满足 (,) 同构于 (,∈)。

相关

  • 电解质失衡电解质在生物体的自平衡维持上相当的重要。电解质可调节心臓及神经机能、输送氧气、维持体液平衡(英语:fluid balance)及酸碱平衡等。电解质的不平衡可能因为以下原因而产生:过
  • 欧洲室尘螨尘螨(学名:Dermatophagoides spp.)是一种8只脚的微小的蛛形纲节肢动物,长170-500微米,宽250-322微米,雌雄个体均为乳白色,肉眼是几乎看不到的,最喜欢生长在温暖潮湿的环境中,适合生长的
  • 英国伦敦皇家内科医学院伦敦皇家内科医师学会 (Royal College of Physicians of London) 是一所位于伦敦的内科医师学会。1518年由亨利八世成立,初时称为内科医师学会,至1674年冠“皇家”称号。成立
  • 王崇简王崇简(1602年12月10日-1678年12月30曰),字敬哉,一作敬斋,明末清初宛平(今属北京市)人。早年加入复社,喜郊游,工山水画,师法米芾。崇祯十六年(1643年)中癸未科进士,未及授官,李自成陷北京。
  • 心理操纵术心理操纵是一种社会影响力,这种社会影响力通过欺骗和卑鄙的手段,甚至是辱骂的战术去改变别人的想法。由于这些方法通常将操纵者的利益建立在其他人的代价之上,它们通常会被认为
  • 保罗兰德·保罗(英语:Rand Paul;1963年1月7日-),全名兰德尔·霍华德·“兰德”·保罗(英语:Randal Howard "Rand" Paul),美国肯塔基州医生与政治人物;于2011年代表共和党当选美国参议员至今
  • 尿片尿片,又称为尿布、尿裤、尿不湿、屎片,是因为无法或尚未训练自行控制大小便而穿着。除此之外,也有让成人使用的成人纸尿片。尿片的出现,大大地改变了婴幼儿及抚养者的生活,方便性
  • 线性判别分析线性判别分析 (LDA)是对费舍尔的线性鉴别方法的归纳,这种方法使用统计学,模式识别和机器学习方法,试图找到两类物体或事件的特征的一个线性组合,以能够特征化或区分它们。所得的
  • 滨口雄幸滨口雄幸(1870年5月1日-1931年8月26日),日本大正、昭和初期政治人物,日本第27任内阁总理大臣,人称“狮子宰相”。高知県长冈郡五台山村出身,1895年东京帝国大学(今 东京大学)毕业,进大
  • 诺曼·艾布拉姆森诺曼·艾布拉姆森(英语:Norman Abramson,1932年4月1日-),生于麻塞诸塞州波士顿,美国计算机科学家,开发出ALOHAnet无线通讯系统。1953年,在哈佛大学取得物理学学士。1955年,于洛杉矶加