范德蒙恒等式

✍ dations ◷ 2025-04-02 13:58:10 #组合数学,数学恒等式

范德蒙恒等式是一个有关组合数的求和公式。

甲班有 m {\displaystyle m} 个同学,乙班有 n {\displaystyle n} 个同学,从两个班中选出 k {\displaystyle k} 个同学有 ( n + m k ) {\displaystyle {\binom {n+m}{k}}} 种方法。

从甲班选 k i {\displaystyle k-i} 名,从乙班选 i {\displaystyle i} 名有 ( n i ) ( m k i ) {\displaystyle {\binom {n}{i}}{\binom {m}{k-i}}} 种方法,考虑所有情况 i = 0 , 1 , , k {\displaystyle i=0,1,\ldots ,k} ,从两个班中合计 k {\displaystyle k} 选出个同学有 i = 0 k ( n i ) ( m k i ) {\displaystyle \sum _{i=0}^{k}{\binom {n}{i}}{\binom {m}{k-i}}} 种方法。

所以 ( n + m k ) = i = 0 k ( n i ) ( m k i ) {\displaystyle {\binom {n+m}{k}}=\sum _{i=0}^{k}{\binom {n}{i}}{\binom {m}{k-i}}}

注意到

等号左边化简成

等号右边则根据定义

比较 x k {\displaystyle x^{k}} 系数,可得

k i j ( n 1 k 11 , k 12 , , k 1 t ) ( n s k s 1 , k s 2 , , k s t ) = ( n 1 + n 2 + + n s r 1 , r 2 , , r t ) {\displaystyle \sum _{k_{ij}}{n_{1} \choose k_{11},k_{12},\dots ,k_{1t}}\dots {n_{s} \choose k_{s1},k_{s2},\dots ,k_{st}}={n_{1}+n_{2}+\dots +n_{s} \choose r_{1},r_{2},\dots ,r_{t}}}

其中 ( n n 1 , n 2 , , n m ) = n ! n 1 ! n 2 ! n m ! , k 1 l + k 2 l + + k s l = r l , l = 1 , , t {\displaystyle {n \choose n_{1},n_{2},\dots ,n_{m}}={\frac {n!}{n_{1}!n_{2}!\dots n_{m}!}},k_{1l}+k_{2l}+\dots +k_{sl}=r_{l},l=1,\dots ,t}

展开 ( x 1 + x 2 + + x t ) n 1 + n 2 + + n s = ( x 1 + x 2 + + x t ) n 1 ( x 1 + x 2 + + x t ) n s {\displaystyle (x_{1}+x_{2}+\dots +x_{t})^{n_{1}+n_{2}+\dots +n_{s}}=(x_{1}+x_{2}+\dots +x_{t})^{n_{1}}\dots (x_{1}+x_{2}+\dots +x_{t})^{n_{s}}} 可得以上结论。

范德蒙恒等式是超几何函数的一个整数特例。

2 F 1 ( a , b ; c ; 1 ) = n = 0 a ( n ) b ( n ) c ( n ) n ! = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) , ( c ) > ( a + b ) {\displaystyle {}_{2}F_{1}(a,b;c;1)=\sum _{n=0}^{\infty }{\frac {a^{(n)}b^{(n)}}{c^{(n)}n!}}={\frac {\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}},\quad \Re (c)>\Re (a+b)}

i = 0 k ( n i ) ( m k i ) = m ! k ! ( m k ) ! i = 0 ( n ) ( i ) ( k ) ( i ) ( m k + 1 ) ( i ) i ! = m ! k ! ( m k ) ! 2 F 1 ( n , k ; m k + 1 ; 1 ) {\displaystyle \sum _{i=0}^{k}{\binom {n}{i}}{\binom {m}{k-i}}={\frac {m!}{k!(m-k)!}}\sum _{i=0}^{\infty }{\frac {(-n)^{(i)}(-k)^{(i)}}{(m-k+1)^{(i)}i!}}={\frac {m!}{k!(m-k)!}}{}_{2}F_{1}(-n,-k;m-k+1;1)}

= m ! k ! ( m k ) ! Γ ( m k + 1 ) Γ ( n + m + 1 ) Γ ( n + m k + 1 ) Γ ( m + 1 ) = ( n + m ) ! k ! ( n + m k ) ! = ( n + m k ) {\displaystyle ={\frac {m!}{k!(m-k)!}}{\frac {\Gamma (m-k+1)\Gamma (n+m+1)}{\Gamma (n+m-k+1)\Gamma (m+1)}}={\frac {(n+m)!}{k!(n+m-k)!}}={\binom {n+m}{k}}}

相关

  • 圣殿圣殿(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey Ash
  • 传播艾滋病罪传播艾滋病罪在许多国家都会被认为是一种犯罪,不论是故意或者由于疏忽大意传播艾滋病。有这种行为的人会被以传播艾滋病、谋杀、一般杀人、谋杀未遂、袭击等罪名控告。有的国
  • 行星地质学行星地质学(Planetary Geology),亦称为天体地质学(Astrogeology)、天文地质学(Exogeology),是行星科学的一个重要分支学科,研究的范围是行星、卫星、小行星、彗星以及陨石等天体的地
  • 地质地质学(法语、德语:Geologie;英语:Geology;拉丁语、西班牙语:Geologia;源于希腊语 γῆ 和 λoγία)是对地球的起源探讨压力与时间、历史和结构进行研究的学科。主要研究地球的物
  • 按首次宇航年份自从1961年4月12日,苏联的第一次航天任务起,已有41个国籍的宇航员和3个国家的火箭进入太空。每个国家的第一次任务如下(蓝色粗体是指已实现独立载人航天技术的):
  • 单花小檗单花小檗(学名:Berberis candidula)是小檗科小檗属的植物,为中国的特有植物。分布于中国大陆的四川、湖北等地,生长于海拔1,200米至3,000米的地区,多生于山地路旁以及灌丛中,目前尚
  • 郑芝龙1604年4月16日郑芝龙(1604年4月16日-1661年11月24日),字飞黄,小名一官(闽南语:It-kuan;荷兰书写闽南语:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFon
  • 诏安诏安县(闽南语:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Chià
  • 龙胆木属核心真双子叶植物 龙胆木属(学名:)是大戟科下的一个属,为乔木或灌木植物。该属共有2种,分布于印度、马来西亚至菲律宾。
  • 穿帮穿帮是指电影或电视剧中由于制作上的失误导致的各种失真、滑稽、剧情不连贯的问题。日常话语中也形容因为意外因素,导致编织的谎言露马脚。举例而言:另外,演员在表演时念错别字