扰动位

✍ dations ◷ 2025-06-28 19:44:00 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 批判社区心理学批判社区心理学 (英文:Critical Community Psychology)是一个新的领域,主要为“批判心理学”(Critical Psychology)与“社区心理学”(Community Psychology)的结合体。换言之,
  • 弗留利语意大利弗留利语(弗留利语:Furlan,意大利语:friulano)是一种罗曼语族语言,属于列托-罗曼斯语语支,在意大利的弗留利-威尼斯朱利亚流通。弗留利语有约 60 万使用者,大部分使用者同时能
  • 菲律宾海板块隐没带 Alps 造山带 30→ 相对于非洲板块的移动速度(mm/Y)菲律宾海板块(英语:Philippine Sea Plate),是位于西太平洋菲律宾海的一个大洋板块,其形状略呈菱形,面积在30个主要板块中排
  • 核武器扩散核武器扩散是指地球上越来越多国家拥有核武器且核物总数越来越多的状态,其带来的政治、军事、经济相关变化和问题。垂直扩散指的是一个国家同时增加核武器的种类多样性和数量
  • 财政年度财政年度,又称会计年度,是指公司或国家每年制定预算或计算收入的统计时间。但每个国家或其法例所辖的组织各有不同,大抵分成两类:一是历年制,一是跨年制。历年制即是由1月1日起,使
  • 百万美元宝贝《百万宝贝》(英语:Million Dollar Baby)是克林特·伊斯特伍德在2004年制作的电影,由克林特·伊斯特伍德、希拉里·斯旺克与摩根·弗里曼等人主演。得到第77届奥斯卡金像奖最佳
  • 巧克力蛋糕巧克力蛋糕(英语:Chocolate cake)是一种以巧克力制成的蛋糕,于生日派对及婚礼常见,也是常见的甜品之一。巧克力蛋糕有时被误称为黑森林蛋糕,虽然两者实际上有分别。巧克力蛋糕的种
  • 清河清河区是辽宁省铁岭市下辖的一个市辖区。面积423平方千米,人口10万。邮政编码112003。政府驻清河路63号。下辖2个街道、1个镇、1个乡、1个民族乡:102国道、沈哈高速公路和京哈
  • 京釜高速线本线:346.4千米 始兴连结线:1.5千米 大田南连结线:4.2千米 大邱北连结线:3.5千米 干川连结线:3.3千米京釜高速线(朝鲜语:경부고속선/京釜高速線 Gyeongbu Gosok seon */?)是一条连
  • 山形县第1区山形县第1区是日本众议院的选区,始于1994年。北海道 13 | 山形县 4 | 静冈县 9 | 岛根县 3 | 大分县 4福井县 3 | 山梨县 3 | 德岛县 3 | 高知县 3 | 佐贺县 3青森县 4 | 岩