扰动位

✍ dations ◷ 2025-04-02 14:32:24 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 国防情报局国防情报局(英语:Defense Intelligence Agency,缩写:DIA)为美国国防部辖下主要对外军事情报组织。是美国情报体系的机构之一。
  • 4d7 5s12, 8, 18, 15, 1蒸气压第一:710.2 kJ·mol−1 第二:1620 kJ·mol−1 第三:2747 kJ·mol主条目:钌的同位素钌(拼音:liǎo,注音:ㄌㄧㄠˇ,粤拼:liu5)是一种化学元素,化学符号为
  • 豪普特曼赫伯特·阿龙·豪普特曼(英语:Herbert Aaron Hauptman,1917年2月14日-2011年10月23日),美国数学家和化学家。因与杰罗姆·卡尔勒(Jerome Karle)一起开发了应用X射线衍射确定物质晶体
  • 互联网的历史互联网历史起源于美国努力将计算机网络相互连接的过程,这个过程涉及国际合作,特别是与英国、法国研究人员的合作。互联网的主要前身为阿帕网。1974年美国国防部国防高等研究计
  • 出草出草(布农语:kanasan,鲁凯语:waulri,太鲁阁语:mtkrang,赛夏语:malakem,阿美语:militafad,噶哈巫语:Atama Taukan,泰雅语:mgaya,赛德克语: lmaqi,噶玛兰语:sataban,邹语:ozomʉ,拉阿鲁哇语: maruv
  • 摩尔多瓦国家银行摩尔多瓦国家银行(罗马尼亚语:Banca Naţională a Moldovei),摩尔多瓦共和国的中央银行。坐标:47°01′45″N 28°50′17″E / 47.02917°N 28.83806°E / 47.02917; 28.83806
  • 7月4日7月4日是阳历年的第185天(闰年是186天),离一年的结束还有180天。
  • 左旋与右旋左旋(levorotation)与右旋(dextrorotation)是指有机化合物的对映异构体对偏振光中分别使光向逆时针或顺时针方向旋转。会令偏振光左旋或右旋的异构体会被称为左旋体和右旋体
  • 希律亚基帕一世希律·亚基帕一世,也称亚基帕一世 (希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","
  • 2014年国际足联世界杯预选赛 (南美洲区)2014年国际足联世界杯南美洲区预选赛是决定南美洲球队参加2014年国际足联世界杯资格的赛事。其中巴西作为主办国自动晋级。2014年国际足联世界杯预选赛(南美洲区)由于巴西队作