扰动位

✍ dations ◷ 2025-04-26 12:04:46 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 细胞细胞(英语:Cell)旧称䏭,是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹
  • 积极治疗积极治疗(英文:Curative care)指的是所罹患的疾病因仍有痊愈(英语:Cure)机会,故而以治愈疾病为目的而采取的积极治疗策略。积极治疗与预防性治疗(预防性医疗)及和缓医疗不同。预防性
  • 鲛齿鲸鲛齿鲸(学名Squalodon),又名原鲛鲸或鲨齿鲸,是一属已灭绝的鲸鱼,属于鲛齿鲸科。鲛齿鲸最初由Grateloup于1840年所命名,并被认为是属于禽龙类的恐龙,但后来被重新分类。鲛齿鲸的学名
  • 伊丽莎白·华伦伊丽莎白·安·沃伦(英语:Elizabeth Ann Warren(旧姓赫林(Herring));1949年6月22日-)美国民主党籍政治人物,是马萨诸塞州的资深联邦参议员。2019年2月10日,沃伦正式宣布参加2020年美国
  • 双相障碍躁郁症(英语:bipolar disorder,亦称双相情感障碍、情绪两极症,早期称为躁狂抑郁疾病、manic depression),是一种精神病经历情绪的亢奋期和抑郁期。情绪亢奋期(躁期)可分为“狂躁”或
  • 化学纤维人造纤维,又称化学纤维,简称化纤,指各式各样的化学合成纤维,属于塑料。包括但不限于聚酯、尼龙、Spandex等。以物理力量把化学物质迫过小孔,形成极幼的纤维条。人造纤维是经过化
  • 得州仪器德州仪器(英语:Texas Instruments, TI)是一家位于美国德克萨斯州达拉斯的跨国公司,以开发、制造、销售半导体和计算器技术闻名于世,主要从事数字信号处理与模拟电路方面的研究、
  • 猫与桃花源追光动画(英语:Light Chaser Animation Studios)由土豆网创始人、前CEO王微于2013年3月在北京创立。追光团队当前拥有190人。在2013年3月12日,王微宣布成立一个动画电影制片厂叫
  • 八阶六边形镶嵌在几何学中,八阶六边形镶嵌是由六边形组成的双曲面正镶嵌图,每八个六边形共用一个顶点。在施莱夫利符号用{6,8}表示。八阶六边形镶嵌即每个顶点皆为八个六边形的公共顶点,顶点
  • 罗马 (2018年电影)《罗马》(西班牙语:)是一部2018年墨西哥及美国合拍的黑白剧情片,由阿方索·卡隆执导、监制、编剧、摄影和剪辑,改编自他的童年经历。该片最先于2018年8月30日在第75届威尼斯电影