扰动位

✍ dations ◷ 2025-06-07 11:46:08 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 平菇平菇(学名:Pleurotus ostreatus)又名侧耳、糙皮侧耳、蚝菇、黑牡丹菇、北风菌、鲍鱼菇或天喜菇,其白变种有白玉、白雪、雪花菇,是侧耳科侧耳属一个物种,是种相当常见的灰色食用菇
  • 2003年SARS殉职医护列表本表列出在2003年SARS爆发期间殉职的医疗工作者及医疗相关的人士,并依照国籍与逝世日期英文排序。
  • 低频低频(LF, Low frequency)是指频带由30 KHz到300 KHz的无线电电波。LF多用作卫星导航系统(差分全球定位系统)、国际广播以及AM广播等,另外亦可用作电波时计(授时)。一些无线电频率识
  • 热容热容量(英语:heat capacity)是一定量的物质在一定条件下温度升高1度所需吸收的热量,用符号C 表示,单位是J·K-1或J·℃-1。其公式为:C = lim
  • 东南彝语东南部方言,是彝语的一种方言,使用人数40万人,主要分布在云南省东南部。分布范围东至广南县、富宁县,南至马关县、麻栗坡县,西至弥勒县、开远市、蒙自市,与南部方言区接界,北至
  • 马卡蒂马卡蒂(英语:Makati),又译马卡迪、马卡第、马加智(闽南语白话字:Má-ka-tì)是组成菲律宾马尼拉大都会的16座城市之一。马卡蒂是菲律宾的金融中心,全国最高密度的国际企业与本地企业
  • 2019冠状病毒病斯威士兰疫情2019冠状病毒病斯威士兰疫情,介绍在2019新型冠状病毒疫情中,在斯威士兰发生的情况。2020年3月13日晚,斯威士兰宣布该国确诊首例新冠肺炎病例,患者2月底从美国返回并前往莱索托,3
  • 斯普林菲尔德 (俄勒冈州)斯普林菲尔德(英语:Springfield, Oregon)是美国俄勒冈州雷恩县的一座城市,2010年人口为59403人,5号州际公路分隔开该城与尤金。市名称取自市内的一片大草原(斯普林菲尔德直译为“
  • 航空发动机航空发动机(Aircraft engine)是指主要用来产生拉力或推力使飞机前进的发动机设备。除了产生前进力外,还可以为飞机上的用电设备提供电力,与为空调设备等用气设备提供气源。一般
  • 室町幕府室町幕府,也称足利幕府,是日本历史上第二个幕府政权,由足利尊氏于1338年开设,终于1573年,其间共经历16代室町征夷大将军(由于第10和12代将军是同一人,所以有说是15代)。室町幕府虽然