扰动位

✍ dations ◷ 2025-07-03 13:15:21 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 同物异名异名(英语:synonyms)或称同物异名,在生物分类学上,是表示用来指称同一分类单元(taxon)的不同命名,此用词在动物学与植物学上的用法不甚相同。在动物命名上,异名是指用来表示同一个分
  • 调情调情(Flirting)是一种社会行为(英语:Social behavior)(也可能带有性的意味),是一个人表达对另一人的兴趣及好感,希望两人有更深入的关系,若是以嬉戏的方式进行,也可能是为了娱乐,调情可
  • 西澳西澳大利亚州(英语:Western Australia,缩写:WA),简称西澳,是澳大利亚联邦的一个州,位于澳大利亚西部,今划分为142个地方政府区域,幅员广达2,525,500平方公里,占全国总面积1/3,是面积最广
  • 魔怪妖怪,指草木或者动物等改变成为的精怪,也指怪异、反常的事物与现象。妖怪通常存在于人类想像与传说之中,难以运用科学方法证明其真伪。研究这方面的学问,称之为妖怪学,包含在民俗
  • 麦克白芬莱克之子麦克白塔德(中世纪盖尔语:Mac Bethad mac Findlaích;现代盖尔语:MacBheatha mac Fhionnlaigh;1005年-1057年8月15日),英语化简称麦克白(Macbeth),绰号赤王(Rí Deircc),是1040
  • 节能减碳低碳经济(英文:Low-Carbon Economy,缩写:LCE),是指一个经济系统只有很少或没有温室气体排出到大气层,或指一个经济系统的碳足印接近于或等于零。低碳经济可让大气中的温室气体含量
  • 辛克莱·刘易斯辛克莱·刘易斯(Sinclair Lewis,1885年2月7日-1951年1月10日),美国小说家、短篇故事作家、剧作家,在1930年因“他充沛有力、切身和动人的叙述艺术,和他以机智幽默去开创新风格的才
  • 赖因哈德·塞尔滕赖因哈德·塞尔滕(德语:Reinhard Selten,1930年10月5日-2016年8月23日),德国波恩大学教授,数学家、经济学家,世界语者。1930年出生于当时属于德国的布雷斯劳。布雷斯劳的文化极多元,
  • 洪泽湖洪泽湖,中国五大淡水湖之一,位于淮河下游、江苏省淮安市西北部,是未来“南水北调”工程东线部分的过水通道。在正常水位12.5米时,水面面积为1597平方公里,平均水深1.9米,最大水深4
  • 硫氧还蛋白还原酶硫氧还蛋白还原酶(英语:thioredoxin reductase,缩写为TrxR或者TR),是一种NADPH依赖的包含FAD结构域的还原酶,活性形式通常为二聚体,属于吡啶核苷酸-二硫化物氧化还原酶家族。顾名思