扰动位

✍ dations ◷ 2025-09-07 10:38:06 #大地测量学,地球物理学

扰动位(英语:Disturbing potential),也称异常位(英语:Anomalous potential),指地球的真实重力位与正常重力位之间的差异。:82

扰动位是建立地球重力场模型过程中的关键变量,与大地水准面高和高程异常有着紧密的关系。:214在求解地球形状和地球重力位的问题的过程中,可以先定义一个简单的、能够直接计算得到的正常重力位和正常椭球体,再通过求解扰动位得到大地水准面或似大地水准面与正常椭球体之间的差距(如大地水准面高和垂线偏差),从而得到地球的近似形状和真实重力位。:20在选取正常椭球体时,通常定义其与大地水准面密合,扰动位的量级很小(仅占真实重力位的百万分之五:15),对真实重力位起到改正项的作用:243,通常可以用线性近似和球面近似的方法进行求解:64。

从数学上的定义来看,扰动位 T {\displaystyle T} 通常表达成真实重力位 W {\displaystyle W} 与正常重力位 U {\displaystyle U} 之间的差距::82

其中,两个重力位都由引力位部分和离心力位的部分组成,且两者的离心力位部分可以视作是相同的:214,因此扰动位表现的是两者的引力位差,具有引力位满足拉普拉斯方程的性质::86

因此,扰动位 T {\displaystyle T} 在边界面的外部( r > R {\displaystyle r>R} )展开为球谐函数::88

其中球坐标 ( r , θ , λ ) {\displaystyle (r,\theta ,\lambda )} 表示外部空间某一点的径向距离、极角和经度。 T n ( θ , λ ) {\displaystyle T_{n}(\theta ,\lambda )} 则表示 n {\displaystyle n} 阶面谐函数,且有完全形式::215

上式中各项的含义如下:

又根据正常椭球体的定义,其产生的正常重力位应当与真实重力位在球谐展开式的最大项上相同,且具有一阶系数为零的性质,所以扰动位也常写为::215

由扰动位的球谐表达式,可以求出其一阶和二阶径向导数的相应表达式:

利用缩写 T n ( θ , λ ) = ( n + 1 ) ( n + 2 ) T n ( θ , λ ) {\displaystyle T'_{n}(\theta ,\lambda )=(n+1)(n+2)T_{n}(\theta ,\lambda )} ,可以得到调和函数 r 2 2 T r 2 {\displaystyle r^{2}{\partial ^{2}T \over \partial r^{2}}} 的球谐展开式:

在球近似的条件下,以下三个偏微分被视作相同::87

n {\displaystyle n} h {\displaystyle h} r {\displaystyle r} 分别表示重力矢量的方向、高程方向和地心方向。

以球面对大地水准面进行近似(即假设 r = R {\displaystyle r=R} ),不考虑球谐函数是否收敛的问题,则大地水准面上的扰动位可以表达为::215

重力扰动是指大地水准面上的一点 P {\displaystyle \mathbf {P} } 处,真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 与同一位置上的正常重力 γ P {\displaystyle {\vec {\gamma }}_{P}} 的差异:84,即

利用球面近似,重力扰动可以通过扰动位的一阶径向导数来表述::85

其中 n {\displaystyle n} n {\displaystyle n'} 分别表示真实重力与正常重力方向,即铅垂线方向和椭球的法线方向。

将其展开作级数,得::88

重力异常与重力扰动的区别在于,重力异常比较的重力是点 P {\displaystyle \mathbf {P} } 处的真实重力 g P {\displaystyle {\vec {\text{g}}}_{P}} 和其在椭球面上的投影 Q {\displaystyle \mathbf {Q} } 处的正常重力 γ Q {\displaystyle {\vec {\gamma }}_{Q}} :83,即

其与重力扰动和扰动位的一阶径向导数的关系由重力测量基本微分方程给出:86,这一方程的球面近似形式为:

将其展开作级数,得::89

通过泊松积分公式,可以在表达出大地水准面上的重力异常 Δ g {\displaystyle \Delta {\text{g}}} 和扰动位 T {\displaystyle T} 之间的关系,即::93-94

这一公式由爱尔兰数学物理学家斯托克斯在1849年给出,又称为斯托克斯公式。其中的 S ( ψ ) {\displaystyle S(\psi )} 被称为斯托克斯函数,该项由单位球面上的被计算点与重力异常观测值所在的角元素之间的夹角 ψ {\displaystyle \psi } 决定::94

相关

  • 胃食管反流病胃食道逆流(英文:Gastroesophageal reflux disease、heartburn reflux,缩写:GERD),或称作胃食管反流病、胃酸倒流等,是指胃酸(有时加上十二指肠液)长期不正常地向上反流进入食道甚至
  • 卡洛林文艺复兴卡洛林文艺复兴(Carolingian Renaissance),发生在公元8世纪晚期至9世纪的卡洛林王朝,由查理曼及其后续者在欧洲推行的文艺的复兴运动,主要的进步在文学、艺术、宗教典籍、建筑、
  • 六碘苯六碘苯是一种苯的衍生物,分子式C6I6,意味着苯的六个氢原子均被碘取代。形状为橙黄色晶体,难溶于各种溶剂。苯甲酸与碘化试剂在发烟硫酸中加热首次制得六碘苯。或使用高碘酸作为
  • B06ACA·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码B06(其它血液学药剂)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Coll
  • 黄色黄色是由波长介于565至590奈米的光线所形成的颜色,用色彩的三原色红、绿色光混合可产生黄光。亦为颜料的三原色之一。黄的互补色是蓝。但传统上画师以紫色作为黄的互补色。^
  • 处决处决可以指:
  • 托雷斯海峡群岛托雷斯海峡群岛是澳大利亚的群岛,位于约克角半岛和新几内亚之间的托雷斯海峡,由超过274座岛屿组成,总土地面积566平方公里,其中217平方公里用作农业用途,2001年人口8,069,首府星期
  • 洪龙浩洪龙浩(英语:Francis Borgia Hong Yong-ho,韩语:홍용호 프란치스코;1906年10月12日-?),是天主教平壤教区原主教。出生于朝鲜半岛平壤,1933年5月25日(基督升天日)晋升司铎。1944年3月24日
  • 欧盟公民本文是 欧洲联盟的政治与政府 系列条目之一欧盟公民概念是由马斯特里赫特条约提出的。欧盟公民是对主权国家公民的一种补充,给予他们诸如选举欧洲议会成员,在欧盟境内自由迁徙
  • Argo计划Argo是一个海洋观测系统的名称,可为气候、天气、海洋学及渔业研究提供实时海洋观测数据。该观测系统由大量布放在全球海洋中小型、自由漂移的自动探测设备(Argo剖面浮标)组成。