拉梅函数

✍ dations ◷ 2025-07-04 11:09:11 #特殊函数

拉梅函数(Lame functions)是下列拉梅方程的解:

d 2 w d z 2 + ( A + v ( v + 1 ) k 2 s n 2 ( z , k ) ) w = 0 {\displaystyle {\frac {d^{2}w}{dz^{2}}}+(A+v(v+1)k^{2}sn^{2}(z,k))w=0} +此拉梅方程的正则奇点在复数平面的 2 p K + ( 2 q + 1 ) i K {\displaystyle 2pK+(2q+1)*iK'} 其中 p,q ∈Z,K代表模数为k的完全椭圆积分,K'代表模数为 k = 1 k 2 {\displaystyle k'={\sqrt {1-k^{2}}}} 的完全椭圆积分。

其中 k,v 都是实数,并且 0 < k < 1 {\displaystyle 0<k<1} ,

作雅可比椭圆函数变数替换 s = s n 2 ( z , k ) {\displaystyle s=sn^{2}(z,k)} 得拉梅方程的代数形式:

d 2 Λ d s 2 + 1 2 ( 1 2 + 1 s 1 + 1 s h ) d Λ d s n ( n + 1 ) s + H 4 s ( s 1 ) ( s h ) Λ = 0 {\displaystyle {\frac {d^{2}\Lambda }{ds^{2}}}+{\frac {1}{2}}*({\frac {1}{2}}+{\frac {1}{s-1}}+{\frac {1}{s-h}})*{\frac {d\Lambda }{ds}}-{\frac {n(n+1)s+H}{4s(s-1)(s-h)}}*\Lambda =0}

h = k 2 = a 2 c 2 a 2 b 2 {\displaystyle h=k^{-2}={\frac {a^{2}-c^{2}}{a^{2}-b^{2}}}} ,

H = h A {\displaystyle H=hA}

h > 1 {\displaystyle h>1} 此傅克型方程有四个正则奇点 0 , 1 , h , {\displaystyle 0,1,h,\infty }

d 2 Λ d z 2 + Λ = 0 {\displaystyle {\frac {d^{2}\Lambda }{dz^{2}}}+\Lambda =0}

其中 {\displaystyle \wp } 是魏尔斯特拉斯函数

在雅可比形式的拉梅方程中做代换 s n z = c o s ζ {\displaystyle snz=cos\zeta }

ζ = 1 2 π a m z {\displaystyle \zeta ={\frac {1}{2}}\pi -amz}

可得

d 2 Λ d Λ 2 {\displaystyle {\frac {d^{2}\Lambda }{d\Lambda ^{2}}}} + k 2 c o s ζ sin ζ d Λ d ζ + Λ = 0 {\displaystyle +k^{2}cos\zeta \sin \zeta {\frac {d\Lambda }{d\zeta }}+\Lambda =0}

在上列方程组 h , k , n {\displaystyle h,k,n} 等是实数或复数常数,而各变量为复数。

对于给定的参数v,k,存在四套实数本征值h,令拉梅方程的奇数解或偶数解有2K或4K周期。

与每一个本征值对应的本征函数,称为v阶拉梅函数,其记法及周期性列表于下:

其中 2 m , 2 m + 1 , 2 m + 2 {\displaystyle 2m,2m+1,2m+2} 代表在(0,2K)区间内的零点数。

Heun方程 g h := d 2 ( y ( z ) d z 2 + ( γ z + δ z 1 + ϵ z a ) d ( y ( z ) d z + ( α β z q ) y ( z ) / ( z ( z 1 ) ( z a ) ) = 0 {\displaystyle gh:={\frac {d^{2}(y(z)}{dz^{2}}}+({\frac {\gamma }{z}}+{\frac {\delta }{z-1}}+{\frac {\epsilon }{z-a}})*{\frac {d(y(z)}{dz}}+(\alpha *\beta *z-q)*y(z)/(z*(z-1)*(z-a))=0}


令= γ = 1 / 2 , δ = 1 / 2 , ϵ = 1 / 2 , q = ( 1 / 4 ) a h , α = 1 / 4 , β = v ( v + 1 ) {\displaystyle \gamma =1/2,\delta =1/2,\epsilon =1/2,q=-(1/4)*a*h,\alpha =1/4,\beta =-v(v+1)}

则化为拉梅方程

d 2 ( y ( z ) d z 2 + ( 1 / 2 ( 1 / z + 1 / ( z 1 ) + 1 / ( z a ) ) ) d ( y ( z ) d z + ( 1 / 4 ) ( a h ν ( ν + 1 ) z ) y ( z ) / ( z ( z 1 ) ( z a ) ) = 0 {\displaystyle {\frac {d^{2}(y(z)}{dz^{2}}}+(1/2*(1/z+1/(z-1)+1/(z-a)))*{\frac {d(y(z)}{dz}}+(1/4)*(a*h-\nu *(\nu +1)*z)*y(z)/(z*(z-1)*(z-a))=0}

由于拉梅方程式是Heun方程的特例,因此拉梅方程可以用HeunG函数表示 y ( z ) = C 1 H e u n G ( a , ( 1 / 4 ) a h , ( 1 / 2 ) ν , ( 1 / 2 ) ν + 1 / 2 , 1 / 2 , 1 / 2 , z ) {\displaystyle y(z)=_{C}1*HeunG(a,-(1/4)*a*h,-(1/2)*\nu ,(1/2)*\nu +1/2,1/2,1/2,z)}

+ C 2 ( z ) H e u n G ( a , 1 / 4 + ( 1 / 4 ( h + 1 ) ) a , 1 + ( 1 / 2 ) ν , 1 / 2 ( 1 / 2 ) ν , 3 / 2 , 1 / 2 , z ) {\displaystyle +_{C}2*{\sqrt {(}}z)*HeunG(a,1/4+(1/4*(-h+1))*a,1+(1/2)*\nu ,1/2-(1/2)*\nu ,3/2,1/2,z)} 其中二个HeunG函数是线性无关的。

拉梅函数可以展开成幂级数形式


y ( z ) = v = 0 a v z ρ + v {\displaystyle y(z)=\sum _{v=0}^{\infty }a_{v}*z^{\rho +v}}

其中 ρ {\displaystyle \rho } 只能取 0 , 1 / 2 {\displaystyle 0,1/2}

y ( z ) = 1.2 + 2.3 ( z ) .600 h z ( .383 ( a h 1. a 1. ) ) z ( 3 / 2 ) / a + ( 0.500 e 1 ( 4. a h 4. h + a h 2 + 2. ν 2 + 2. ν ) ) z 2 / a + ( 0.192 e 1 ( 10. a 2 h + 9. a 2 + 6. a 10. a h + 9. + a 2 h 2 + 6. ν a + 6. ν 2 a ) ) z ( 5 / 2 ) / a 2 + O ( z 3 ) {\displaystyle y(z)={1.2+2.3*{\sqrt {(}}z)-.600*h*z-(.383*(a*h-1.*a-1.))*z^{(}3/2)/a+(0.500e-1*(-4.*a*h-4.*h+a*h^{2}+2.*\nu ^{2}+2.*\nu ))*z^{2}/a+(0.192e-1*(-10.*a^{2}*h+9.*a^{2}+6.*a-10.*a*h+9.+a^{2}*h^{2}+6.*\nu *a+6.*\nu ^{2}*a))*z^{(}5/2)/a^{2}+O(z^{3})}}

相关

  • 健康城市健康城市在1981年开始由世界卫生组织开始推动,由世界卫生组织所显示的资料指出,超过百万人口的城市有112个,最迟至2025年,全世界逾60%人口会居住在城市中。 工业化社会所带来的
  • 百灭宁百灭宁是一种抗寄生虫的药物,外用百灭宁用于皮肤,主要治疗疥疮、头虱。普通名称:百灭宁(Permethrin)分子式:C21H20Cl2O3分子量:391.28外观:灰棕色液体熔点:34-35℃沸点:大约200℃蒸气
  • 皮尔逊积矩相关系数在统计学中,皮尔逊积矩相关系数(英语:Pearson product-moment correlation coefficient,又称作 PPMCC或PCCs, 文章中常用r或Pearson's r表示)用于度量两个变量X和Y之间的相关程度
  • 琥珀酸脱氢酶琥珀酸脱氢酶有两种,一种是以泛醌作为受体的,另一种是作用于所有受体。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22  · 2.1/2/3/4/5/6/7(2.7.10/11-12
  • 莉莉·艾尔伯莉莉·艾尔伯(丹麦语:Lili Elbe,1882年12月28日-1931年9月13日)是一位丹麦跨性别女性,也是世界上有纪录的最早接受性别重置手术者之一。艾尔伯出生时生理性别为男性,名叫埃纳·莫恩
  • 陶渊明陶渊明(365年-427年),名潜,字元亮,自号五柳先生,私谥靖节先生。在唐代文献中,因避唐高祖李渊的讳,被称作陶泉明或陶深明。浔阳郡柴桑县(今江西省庐山市)人。东晋、刘宋的文学家,东晋大司
  • 液相液体(英语:Liquid)是物质的四个基本状态之一(其它状态有固体、气体、等离子体),没有确定的形状,但有一定体积,具有移动与转动等运动性。液体是由经分子间作用力结合在一起的微小振动
  • 望加丽岛望加丽岛是印度尼西亚的岛屿,位于马六甲海峡,由廖内省负责管辖,长68公里、宽19公里,面积938.4平方公里,主要经济活动是出口木材、烟草和橡胶。
  • 弗朗茨·卡夫卡弗朗茨·卡夫卡(德文:Franz Kafka,1883年7月3日-1924年6月3日),是奥匈帝国一位使用德语的小说家和短篇犹太人故事家,被评论家们认为是20世纪作家中最具影响力的一位。卡夫卡的代表
  • 新·奥特曼《新·奥特曼》(日语:シン・ウルトラマン)是一部预定于2021年公映的日本电影。由庵野秀明企划和编剧、樋口真嗣执导,两人曾合作推出《新·哥斯拉》。影片改编自圆谷制作的特摄电