阿诺索夫微分同胚

✍ dations ◷ 2025-12-02 05:10:02 #微分同胚,动力系统,双曲几何

在数学中,尤其是动力系统与几何拓扑中,流形M上的阿诺索夫映射(Anosov map)是M到自身的一种映射。阿诺索夫系统是A公理系统的特例。

阿诺索夫微分同胚(Anosov diffeomorphism)由德米特里·维克托罗维奇·阿诺索夫引入,他证明了这种微分同胚的行为在某种意义上是普遍的。

有三个相互联系但又有区别的定义:

阿诺索夫证明了阿诺索夫微分同胚是结构稳定的,并且组成了全体映射(流)的开子集( C 1 {\displaystyle {\mathcal {C}}^{1}} 拓扑)。

并非每个流形上都可以有阿诺索夫微分同胚;例如,球面上就没有这样的微分同胚。容许有阿诺索夫微分同胚的最简单的紧流形是环面:上面有所谓的线性阿诺索夫微分同胚,这是没有模1特征值的同构。可以证明环面上其他的阿诺索夫微分同胚都与这种同胚拓扑共轭。

对容许有阿诺索夫微分同胚的流形进行分类是非常困难的问题,截至2012年仍然没有解决。

另外,也不清楚是否每个 C 1 {\displaystyle {\mathcal {C}}^{1}} 且保持体积的阿诺索夫微分同胚都是遍历的。阿诺索夫证明了把 C 1 {\displaystyle {\mathcal {C}}^{1}} 换成 C 2 {\displaystyle {\mathcal {C}}^{2}} 的条件下是成立的。

负曲率黎曼曲面的切丛上的阿诺索夫流。这个流可以理解为双曲几何的庞加莱半平面模型的切丛上的流。负曲率黎曼曲面可以用福克斯模型来定义,即上半平面与福克斯群的商。设 H {\displaystyle \mathbb {H} } 为上半平面, Γ {\displaystyle \Gamma } 为福克斯群, M = H / Γ {\displaystyle M=\mathbb {H} /\Gamma } 为负曲率黎曼曲面, T 1 M {\displaystyle T^{1}M} 为流形M上的单位向量的切丛, T 1 H {\displaystyle T^{1}\mathbb {H} } H {\displaystyle \mathbb {H} } 的单位向量的切丛。注意曲面上单位向量的丛是复直线丛的主丛。

注意 T 1 H {\displaystyle T^{1}\mathbb {H} } 同构于李群 PSL ( 2 , R ) {\displaystyle {\text{PSL}}(2,\mathbb {R} )} 。这个群是上半平面的保向等距同构组成的群。 PSL ( 2 , R ) {\displaystyle {\text{PSL}}(2,\mathbb {R} )} 的李代数是 s l ( 2 , R ) {\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )} ,由以下矩阵表示

J = ( 1 / 2 0 0 1 / 2 ) X = ( 0 1 0 0 ) Y = ( 0 0 1 0 ) {\displaystyle J={\begin{pmatrix}1/2&0\\0&-1/2\end{pmatrix}}\quad X={\begin{pmatrix}0&1\\0&0\end{pmatrix}}\quad Y={\begin{pmatrix}0&0\\1&0\end{pmatrix}}}

= X , = Y , = 2 J {\displaystyle =X,\quad =-Y,\quad =2J}

指数映射

g t = exp t J = ( e t / 2 0 0 e t / 2 ) h t = exp t X = ( 1 t 0 1 ) h t = exp t Y = ( 1 0 t 1 ) {\displaystyle g_{t}=\exp {tJ}={\begin{pmatrix}e^{t/2}&0\\0&e^{-t/2}\end{pmatrix}}\quad h_{t}^{*}=\exp {tX}={\begin{pmatrix}1&t\\0&1\end{pmatrix}}\quad h_{t}=\exp {tY}={\begin{pmatrix}1&0\\t&1\end{pmatrix}}}

定义了流形 T 1 H = PSL ( 2 , R ) {\displaystyle T^{1}\mathbb {H} ={\text{PSL}}(2,\mathbb {R} )} 上的右不变流,而 T 1 M {\displaystyle T^{1}M} 与此类似。定义 P = T 1 H , Q = T 1 M {\displaystyle P=T^{1}\mathbb {H} ,Q=T^{1}M} ,这些流定义了P和Q上的向量场。

g t {\displaystyle g_{t}} 是P和Q上的测地流。根据定义李向量场在群元素的作用下是左不变的,可以得到这些场在 g t {\displaystyle g_{t}} 下是左不变的。换句话说,空间 T P {\displaystyle TP} T Q {\displaystyle TQ} 分成了三个一维空间,或子丛,每一个都在测地流作用下不变。最后注意到其中一个子丛的向量场呈指数扩大,另一个不变,第三个呈指数缩小。

精确地说,切丛 T Q {\displaystyle TQ} 可以写成直和

T Q = E + E 0 E {\displaystyle TQ=E^{+}\oplus E^{0}\oplus E^{-}}

这些空间在测地流的作用下不变;即,在群元素 g = g t {\displaystyle g=g_{t}} 的作用下不变。

要比较不同点q处 T q Q {\displaystyle T_{q}Q} 的向量的长度,需要有度量。 T e P = s l ( 2 , R ) {\displaystyle T_{e}P={\mathfrak {sl}}(2,\mathbb {R} )} 上的任何内积都可扩张成P上的左不变黎曼度量,进而得到Q上的黎曼度量。向量 v E q + {\displaystyle v\in E_{q}^{+}} 的长度在 g t {\displaystyle g_{t}} 的作用下指数增大。向量 v E q {\displaystyle v\in E_{q}^{-}} 的长度在 g t {\displaystyle g_{t}} 的作用下指数衰减。 E q 0 {\displaystyle E_{q}^{0}} 中的向量不变。测地流是不变的

g s g t = g t g s = g s + t {\displaystyle g_{s}g_{t}=g_{t}g_{s}=g_{s+t}}

但另外两个分别是衰减和增大的:

g s h t = h t exp ( s ) g s {\displaystyle g_{s}h_{t}^{*}=h_{t\exp {(-s)}}^{*}g_{s}}

g t h t = h t exp s g s {\displaystyle g_{t}h_{t}=h_{t\exp {s}}g_{s}}

其中 E q + {\displaystyle E_{q}^{+}} 中的切向量由曲线 h t {\displaystyle h_{t}} t = 0 {\displaystyle t=0} 处的导数给出。

当作用在上半平面的点 z = i {\displaystyle z=i} 时, g t {\displaystyle g_{t}} 对应了上半平面的一条过点 z = i {\displaystyle z=i} 的测地线。这个作用就是 SL ( 2 , R ) {\displaystyle {\text{SL}}(2,\mathbb {R} )} 在上半平面的标准莫比乌斯变换,所以

g t i = ( exp ( t / 2 ) 0 0 exp ( t / 2 ) ) i = i exp t {\displaystyle g_{t}\cdot i={\begin{pmatrix}\exp {(t/2)}&0\\0&\exp {(-t/2)}\end{pmatrix}}\cdot i=i\exp {t}}

一般的测地线

( a b c d ) i exp t = a i exp t + b c i exp t + d {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}\cdot i\exp {t}={\frac {ai\exp {t}+b}{ci\exp {t}+d}}}

式中 a , b , c , d {\displaystyle a,b,c,d} 是实数,且 a d b c = 1 {\displaystyle ad-bc=1} 。曲线 h t {\displaystyle h_{t}^{*}} h t {\displaystyle h_{t}} 称为极限圆。极限圆对应于极限球面的法向量在上半平面的运动。

相关

  • 亚硫酸盐定序亚硫酸盐定序(英语:bisulfite sequencing)是一种利用亚硫酸盐处理,测定DNA甲基化情形的方法。DNA甲基化是最早被发现的表观遗传标记,也是被研究最为深入的表观遗传改变。原理在于
  • 人工诱导多能干细胞诱导性多能干细胞(英语:Induced pluripotent stem cell),又称人工诱导多能干细胞,常简称为iPS细胞(iPSC),是一种由哺乳动物成体细胞经转入转录因子等手段脱分化形成的多能干细胞,最早
  • 马其顿人马其顿人(西里尔字母:Македонци,拉丁字母:Makedonci)也称马其顿斯拉夫人,指的是主要居住在北马其顿的一支南斯拉夫人,和保加利亚人实际上是同一民族。马其顿人以马其顿语
  • 易服易装、变装、易服泛指改变装扮外观与装束服饰的行为,各种乔装行为都可以属之。其可能指:
  • 汤姆斯通汤姆斯通(英语:Tombstone,意译“墓碑”,也称墓碑镇) 为美国亚利桑那州科奇斯县的一座历史名城,1879年由埃德·席费林建立。该城市为美国旧西部最后开拓的边境城市之一。汤姆斯通曾
  • 关内关内可以指:
  • Signal (TWICE迷你专辑)《SIGNAL》是韩国女子团体TWICE的第四张韩语迷你专辑。由JYP娱乐制作,Genie音乐发行,于2017年5月15日推出。同名主打歌曲〈SIGNAL〉,由朴轸永制作。2017年5月1日,JYP娱乐释出第
  • 桃林水库桃林水库位于湖南省湘乡市翻江镇。水从褒忠山西麓发源而来,向北流入水府庙水库,汇入涟水。湘乡水利局网站落实“河长制”:桃林水库水毁修复 水质良好
  • 依纳爵·罗耀拉圣依纳爵‧罗耀拉(西班牙语:San Ignacio de Loyola,受洗前名为Íñigo López de Loyola;依纳爵又译伊格那丢;1491年-1556年7月31日),西班牙人,耶稣会创始人,罗马公教圣人之一。他在罗
  • 阿夫拉姆·戴维森阿夫拉姆·戴维森(Avram Davidson,1923年4月23日-1993年5月8日)是美国奇幻小说,科幻小说和犯罪小说作家。阿夫拉姆·戴维森曾赢得雨果奖和三届世界奇幻奖,世界奇幻终身成就奖 ,也曾