阿诺索夫微分同胚

✍ dations ◷ 2025-04-03 10:07:33 #微分同胚,动力系统,双曲几何

在数学中,尤其是动力系统与几何拓扑中,流形M上的阿诺索夫映射(Anosov map)是M到自身的一种映射。阿诺索夫系统是A公理系统的特例。

阿诺索夫微分同胚(Anosov diffeomorphism)由德米特里·维克托罗维奇·阿诺索夫引入,他证明了这种微分同胚的行为在某种意义上是普遍的。

有三个相互联系但又有区别的定义:

阿诺索夫证明了阿诺索夫微分同胚是结构稳定的,并且组成了全体映射(流)的开子集( C 1 {\displaystyle {\mathcal {C}}^{1}} 拓扑)。

并非每个流形上都可以有阿诺索夫微分同胚;例如,球面上就没有这样的微分同胚。容许有阿诺索夫微分同胚的最简单的紧流形是环面:上面有所谓的线性阿诺索夫微分同胚,这是没有模1特征值的同构。可以证明环面上其他的阿诺索夫微分同胚都与这种同胚拓扑共轭。

对容许有阿诺索夫微分同胚的流形进行分类是非常困难的问题,截至2012年仍然没有解决。

另外,也不清楚是否每个 C 1 {\displaystyle {\mathcal {C}}^{1}} 且保持体积的阿诺索夫微分同胚都是遍历的。阿诺索夫证明了把 C 1 {\displaystyle {\mathcal {C}}^{1}} 换成 C 2 {\displaystyle {\mathcal {C}}^{2}} 的条件下是成立的。

负曲率黎曼曲面的切丛上的阿诺索夫流。这个流可以理解为双曲几何的庞加莱半平面模型的切丛上的流。负曲率黎曼曲面可以用福克斯模型来定义,即上半平面与福克斯群的商。设 H {\displaystyle \mathbb {H} } 为上半平面, Γ {\displaystyle \Gamma } 为福克斯群, M = H / Γ {\displaystyle M=\mathbb {H} /\Gamma } 为负曲率黎曼曲面, T 1 M {\displaystyle T^{1}M} 为流形M上的单位向量的切丛, T 1 H {\displaystyle T^{1}\mathbb {H} } H {\displaystyle \mathbb {H} } 的单位向量的切丛。注意曲面上单位向量的丛是复直线丛的主丛。

注意 T 1 H {\displaystyle T^{1}\mathbb {H} } 同构于李群 PSL ( 2 , R ) {\displaystyle {\text{PSL}}(2,\mathbb {R} )} 。这个群是上半平面的保向等距同构组成的群。 PSL ( 2 , R ) {\displaystyle {\text{PSL}}(2,\mathbb {R} )} 的李代数是 s l ( 2 , R ) {\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )} ,由以下矩阵表示

J = ( 1 / 2 0 0 1 / 2 ) X = ( 0 1 0 0 ) Y = ( 0 0 1 0 ) {\displaystyle J={\begin{pmatrix}1/2&0\\0&-1/2\end{pmatrix}}\quad X={\begin{pmatrix}0&1\\0&0\end{pmatrix}}\quad Y={\begin{pmatrix}0&0\\1&0\end{pmatrix}}}

= X , = Y , = 2 J {\displaystyle =X,\quad =-Y,\quad =2J}

指数映射

g t = exp t J = ( e t / 2 0 0 e t / 2 ) h t = exp t X = ( 1 t 0 1 ) h t = exp t Y = ( 1 0 t 1 ) {\displaystyle g_{t}=\exp {tJ}={\begin{pmatrix}e^{t/2}&0\\0&e^{-t/2}\end{pmatrix}}\quad h_{t}^{*}=\exp {tX}={\begin{pmatrix}1&t\\0&1\end{pmatrix}}\quad h_{t}=\exp {tY}={\begin{pmatrix}1&0\\t&1\end{pmatrix}}}

定义了流形 T 1 H = PSL ( 2 , R ) {\displaystyle T^{1}\mathbb {H} ={\text{PSL}}(2,\mathbb {R} )} 上的右不变流,而 T 1 M {\displaystyle T^{1}M} 与此类似。定义 P = T 1 H , Q = T 1 M {\displaystyle P=T^{1}\mathbb {H} ,Q=T^{1}M} ,这些流定义了P和Q上的向量场。

g t {\displaystyle g_{t}} 是P和Q上的测地流。根据定义李向量场在群元素的作用下是左不变的,可以得到这些场在 g t {\displaystyle g_{t}} 下是左不变的。换句话说,空间 T P {\displaystyle TP} T Q {\displaystyle TQ} 分成了三个一维空间,或子丛,每一个都在测地流作用下不变。最后注意到其中一个子丛的向量场呈指数扩大,另一个不变,第三个呈指数缩小。

精确地说,切丛 T Q {\displaystyle TQ} 可以写成直和

T Q = E + E 0 E {\displaystyle TQ=E^{+}\oplus E^{0}\oplus E^{-}}

这些空间在测地流的作用下不变;即,在群元素 g = g t {\displaystyle g=g_{t}} 的作用下不变。

要比较不同点q处 T q Q {\displaystyle T_{q}Q} 的向量的长度,需要有度量。 T e P = s l ( 2 , R ) {\displaystyle T_{e}P={\mathfrak {sl}}(2,\mathbb {R} )} 上的任何内积都可扩张成P上的左不变黎曼度量,进而得到Q上的黎曼度量。向量 v E q + {\displaystyle v\in E_{q}^{+}} 的长度在 g t {\displaystyle g_{t}} 的作用下指数增大。向量 v E q {\displaystyle v\in E_{q}^{-}} 的长度在 g t {\displaystyle g_{t}} 的作用下指数衰减。 E q 0 {\displaystyle E_{q}^{0}} 中的向量不变。测地流是不变的

g s g t = g t g s = g s + t {\displaystyle g_{s}g_{t}=g_{t}g_{s}=g_{s+t}}

但另外两个分别是衰减和增大的:

g s h t = h t exp ( s ) g s {\displaystyle g_{s}h_{t}^{*}=h_{t\exp {(-s)}}^{*}g_{s}}

g t h t = h t exp s g s {\displaystyle g_{t}h_{t}=h_{t\exp {s}}g_{s}}

其中 E q + {\displaystyle E_{q}^{+}} 中的切向量由曲线 h t {\displaystyle h_{t}} t = 0 {\displaystyle t=0} 处的导数给出。

当作用在上半平面的点 z = i {\displaystyle z=i} 时, g t {\displaystyle g_{t}} 对应了上半平面的一条过点 z = i {\displaystyle z=i} 的测地线。这个作用就是 SL ( 2 , R ) {\displaystyle {\text{SL}}(2,\mathbb {R} )} 在上半平面的标准莫比乌斯变换,所以

g t i = ( exp ( t / 2 ) 0 0 exp ( t / 2 ) ) i = i exp t {\displaystyle g_{t}\cdot i={\begin{pmatrix}\exp {(t/2)}&0\\0&\exp {(-t/2)}\end{pmatrix}}\cdot i=i\exp {t}}

一般的测地线

( a b c d ) i exp t = a i exp t + b c i exp t + d {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}\cdot i\exp {t}={\frac {ai\exp {t}+b}{ci\exp {t}+d}}}

式中 a , b , c , d {\displaystyle a,b,c,d} 是实数,且 a d b c = 1 {\displaystyle ad-bc=1} 。曲线 h t {\displaystyle h_{t}^{*}} h t {\displaystyle h_{t}} 称为极限圆。极限圆对应于极限球面的法向量在上半平面的运动。

相关

  • 黑色素体黑色素体是一种包含黑色素的亚细胞结构,黑色素细胞、视网膜上皮细胞含有这种结构。仅仅靠吞噬得到黑色素体的细胞被称为噬黑色素细胞。在甲壳类的许多种、鱼类、两栖类以及爬
  • CBrsub4/sub四溴化碳是溴取代甲烷上所有氢的产物,化学式为CBr4。四溴化碳有两种晶型,在46.9°C以下的晶型II(或β)和在46.9°C之上的I(或α)。单晶有C2/c空间群,晶胞参数为a = 20.9, b = 12.1,
  • 本草从新《本草从新》是清代吴仪洛于1757年所著。全书将所有可入药的药材先按草、木、金石、矿物等分类,然后再记载每一种药的药性。
  • 酸碱反应酸碱理论指阐述酸、碱及酸碱反应本质的各种理论。在历史上曾有多种酸碱理论,其中重要的包括:拉瓦锡是最早提出酸碱概念的人。他在1776年左右提出一套酸碱理论。在那时,强酸主要
  • 八一电影制片厂中国人民解放军文化艺术中心电影电视制作部,厂标为中国人民解放军八一电影制片厂,简称八一电影制片厂,位于北京市丰台区广安门外六里桥北里甲1号,隶属中国人民解放军文化艺术中
  • 新挪威语新挪威语(挪威语:nynorsk),又称尼诺斯克挪威语,是两种认可正字的挪威语之一,而另一种是书面挪威语(挪威语:bokmål,又称挪威博克莫尔语)。在挪威,新挪威语被使用于初阶书写达百分之十至
  • 奥尔加·克恩奥尔加·克恩(Olga Kern),出生于1975年4月23日,是俄罗斯的古典钢琴家。曾赢得了范·克莱本国际钢琴比赛金牌。她五岁的时候开始学习钢琴,在莫斯科中央音乐学院与叶夫根尼·季马金
  • 国际文传电讯社国际文传电讯社(Интерфакс),俄罗斯非官方的通讯社,总部设在莫斯科,成立于1989年向公开化方向发展的苏联,目的是打破官方控制的塔斯社对新闻的封锁。国际文传电讯社主要关
  • 异枝狸藻异枝狸藻(学名:),又称小狸藻,中狸藻,扁叶狸藻,为狸藻属多年生小型食虫植物。其种加词“”来源于拉丁文“”和“”,意为“中型”。异枝狸藻通常附于基质生长,但也可浮水生长。其分布于
  • 留日台湾同乡会留日台湾同乡会是日本最具历史且拥有最多会员的侨团,成立于1945年,干部在侨界大多是领导人物,且一直致力于台湾和日本之间的交流,举办过很多活动,现任会长为萧玉兰。