首页 >
米氏常数
✍ dations ◷ 2025-04-26 12:50:22 #米氏常数
米-门二氏动力学(英语:Michaelis-Menten kinetics),又称米氏动力学,是由雷昂诺·米凯利斯(英语:Leonor Michaelis)和贸特·门顿(英语:Maud Menten)在1913年提出,它在酶动力学中是一个极为重要的方程,可以描述多种非变异构酶动力学现象,其表示式为:
V
0
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}以下米氏方程的推导是由Briggs和Haldane在1925年提出的:假设有下图所示的酶促反应E
+
S
k
1
⟶
⟵
k
−
1
E
S
k
2
⟶
E
+
P
{displaystyle E+S{begin{matrix}k_{1}\longrightarrow \longleftarrow \k_{-1}end{matrix}}ES{begin{matrix}k_{2}\longrightarrow \ end{matrix}}E+P}假设此酶促反应不可逆,反应产物不和酶结合;k2<k-1, E+S⇌ES 之间的平衡迅速建立达到平衡态(Steady-state),也就是底物和酶的化合物(ES)的浓度不变;建立平衡态所消耗的底物的量很小,可以忽略。这样有以下关系:d
[
E
S
]
d
t
=
k
1
[
E
]
[
S
]
−
k
−
1
[
E
S
]
−
k
2
[
E
S
]
=
0
{displaystyle {frac {d}{dt}}=k_{1}-k_{-1}-k_{2}=0}[
E
S
]
=
k
1
[
E
]
[
S
]
k
−
1
+
k
2
{displaystyle ={frac {k_{1}}{k_{-1}+k_{2}}}}米氏常数Km的定义为:K
M
=
k
−
1
+
k
2
k
1
{displaystyle K_{M}={frac {k_{-1}+k_{2}}{k_{1}}}}原式可简化为:[
E
S
]
=
[
E
]
[
S
]
K
M
{displaystyle ={frac {}{K_{M}}}}
(1)总的酶的浓度等于自由酶与酶-底物化合物的和,则有以下关系:[
E
0
]
=
[
E
]
+
[
E
S
]
{displaystyle =+}[
E
]
=
[
E
0
]
−
[
E
S
]
{displaystyle =-}
(2)将(2)式代入(1):[
E
S
]
=
(
[
E
0
]
−
[
E
S
]
)
[
S
]
K
M
{displaystyle ={frac {(-)}{K_{M}}}}整理得:[
E
S
]
K
M
[
S
]
=
[
E
0
]
−
[
E
S
]
{displaystyle {frac {K_{M}}{}}=-}[
E
S
]
(
1
+
K
M
[
S
]
)
=
[
E
0
]
{displaystyle (1+{frac {K_{M}}{}})=}[
E
S
]
=
[
E
0
]
1
1
+
K
M
[
S
]
{displaystyle ={frac {1}{1+{frac {K_{M}}{}}}}}
(3)下式可以描述该酶促反应的速率:d
[
P
]
d
t
=
k
2
[
E
S
]
{displaystyle {frac {d}{dt}}=k_{2}}
(4)将 (3) 代入 (4),分号上下同时乘以得:d
[
P
]
d
t
=
k
2
[
E
0
]
[
S
]
K
M
+
[
S
]
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle {frac {d}{dt}}=k_{2}{frac {}{K_{M}+}}=V_{max}{frac {}{K_{M}+}}}
或
V
0
=
V
m
a
x
[
S
]
K
M
+
[
S
]
{displaystyle V_{0}=V_{max}{frac {}{K_{M}+}}}该式可通过非线性作图或Lineweaver-Burk(双倒数作图),Eadie-Hofstee等作图法变换为线性图进行分析。在推导过程中几点需要注意:要测得方程中的KM和Vmax,需要在酶的量恒定并已知的情况下,在不同的底物浓度下测得反应的初速度V0,用非线性作图或线性作图的方法求得KM和Vmax。KM反映了底物和酶结合的紧密程度,Vmax反映了酶催化反应的速度。
相关
- 发展发展可以指:
- 美国政府作品版权依据美国版权法规定,美国政府作品是指政府官员或雇员职务上所创作的作品。此处所定义的政府作品仅及于美国联邦政府,不包括各州及地方政府。依据版权法第105节,美国政府作品不
- 酒令酒令,或称行酒令,最早是在酒宴中限制饮酒的规定。周代设有“立之监”、“佐主史”的令官,是酒令的执法者。但酒令后来却成为酒酣耳热时,朋友间喝酒时助兴图开心所玩的游戏。世界
- 电流源电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时
- 车辆汽车产业,或称汽车工业。是生产汽车有关的工业,包括研发、制造同销售等范畴,是世界上一种比较常见的重工业,是目前世界主要经济支柱之一。
- 酱油 (网络语言)打酱油是源自中国大陆的汉语网络用语,原意是去商店购买酱油,后来衍生出两种用法:一个传统意思,“某某人的孩子都可以打酱油了”是指孩子很大了,可以帮着做家务,其父母不再年轻。另
- 武则天光宅:684年九月~十二月 垂拱:685年~688年 永昌:689年正月~十月 载初:690年正月~八月 天授:690年九月~692年三月 如意:692年四月~九月 长寿:692年九月~694年五月 延载:694年五月~腊月 证圣:695
- 酵素结合免疫吸附分析法酶联免疫吸附试验(又称酵素免疫分析法,Enzyme-linked immunosorbent assay (ELISA),简称酶联法)利用抗原抗体之间专一性键结之特性,对检体进行检测;由于结合于固体承载物(一般为塑
- 豚鼠属豚鼠属(学名:Cavia)是啮齿目豚鼠科的一属,原产于南美洲,现有很多种类作为宠物被引入到世界各地。本属包括以下几种:
- 菜椒菜椒(学名:Capsicum annuum var. grossum),别名甜椒,因其体型宛如灯笼及柿子而也叫“灯笼椒”或“柿子椒”(台湾话则常作“大筒仔”),又因其外皮多为绿色而俗称“青椒”,是茄科辣椒属