微分几何中,埃雷斯曼联络(Ehresmann connection)是应用于任意纤维丛的联络概念的一个版本。
特别的是,它可以是非线性的,因为一般的纤维丛上没有合适的线性的概念。
它适用于主丛这一类特殊的纤维丛,通过联络形式表述,在这种情况联络至少是在一个李群的作用下等变。
埃雷斯曼联络以法国数学家夏尔·埃雷斯曼命名。
微分几何中经典的协变导数是一个线性微分算子,它以协变的方式取向量丛中截面的方向导数,也能用来阐述在在特定向量方向上丛中截面为平行的概念:截面沿着向量平行,如果∇V = 0。所以一个协变导数提供了两个观念:微分算子以及各个方向上的平行。埃雷斯曼联络完全放弃了微分算子,并用截面在各个方向平行的含义来公理化一个联络。精确一点讲,埃雷斯曼联络将纤维丛中的切丛的某些子空间指定为“水平空间”。如果 ( )处于水平空间中,则截面 是在 方向上是水平的(也即平行的)。在这里,我们把 视为从底空间 映射到向量丛 的函数 : → ,且 : → 是向量的前推。水平空间组成 的一个子向量丛。
如此一来直接的好处是它可以用于比向量丛一般得多的场合。特别是,它对于一般的纤维丛都是有定义的。而且,很多协变导数的特色得到了保留:平行移动,曲率和和乐。
然而此定义除了线性之外还失去了。在经典协变导数中,协变性乃是导数的特性。在构造过程中,要先指定“非协变”克氏记号的变换法则,才能给出符合协变的。对埃雷斯曼联络而言,可借由引入作用在纤维丛里纤维上的李群,来强加一个推广的协变原则。恰当的条件就是要求水平空间在某种意义下对应于群作用等变。
埃雷斯曼联络的点睛之笔是它可以表达为一个微分形式,和联络形式的情况类似。若一个群作用在纤维上,并且联络等变,则该形式也是等变的。而且,该联络形式也允许用曲率形式来定义曲率。
令π : → 为纤维丛。上的埃雷斯曼联络由如下数据组成:
用更加看似深奥的术语来讲,满足属性1-4的这样的一个对水平空间的设定,精确地对应于给定一个射丛 → 的光滑截面。
等价的有,令Φ为到铅直丛的投影。这可以由上述到水平和铅直分量的分解得到。则Φ满足:
反过来,若Φ是满足1和2的向量丛映射,则H = Φ定义了上述的一个埃雷斯曼联络的结构。
令Φ为一埃雷斯曼联络。则Φ的曲率为
其中表示Φ ∈ Ω1(,)和它自己的Frölicher-Nijenhuis括号。这样 ∈ Ω2(,)就是一个上取值在中的2-形式,定义为
或者说
其中 = H + V代表到和分量的分解。从上式可以看出,曲率为0当且仅当水平子丛是弗罗贝尼乌斯可积的。这样,曲率是否为0就是水平子丛能否构成纤维丛 → 的横截面的可积性条件。
一个埃雷斯曼的曲率也满足比安基恒等式(Bianchi identity)的一个扩展版本:
其中仍然是Φ ∈ Ω1(,)和 ∈ Ω2(,)的Frölicher-Nijenhuis括号。
埃雷斯曼联络也给出了将曲线从基流形 提升到纤维丛 的总空间并且使得曲线得切向量为水平向量的方式。这些水平提升是其它版本的联络表述中的平行移动的直接对应。
精确来讲,设 γ() 为 中穿过点 = γ(0) 的光滑曲线。令 ∈ P 为 上的纤维中的一点。γ 穿过 的一个提升就是一条曲线 中,并满足
提升是水平的,当曲线的每个切向量位于 的水平子丛中:
对π和Φ利用秩-零化度定理可以证明每个向量 ∈ TP有唯一的水平提升,对于足够小的时间总是的γ的水平提升
埃雷斯曼联络允许曲线有局部水平提升。对于一个完备埃雷斯曼联络,曲线可以在整个定义域上水平提升。
联络的平坦性局部对应于水平空间的弗罗贝尼乌斯可积性。在另一个极端,非零曲率表示了联络的和乐群的存在。
对于主-丛 的切空间,用 在的群作用的微分。
使用射丛 的单参数子群铅直作用于上。该作用的微分允许我们可以讲子空间群的李代数等同起来,譬如通过映射中取值的微分形式-值1-形式在一个主丛上产生一个水平分布,满足前面所说的属性。
给定一个局部平凡化,可以将上定义了一个形式。该形式完全确定了,但是它依赖于平凡化的选择。(这个形式经常也称为联络形式并也记为。)