首页 >
制镜者方程
✍ dations ◷ 2025-08-08 23:24:07 #制镜者方程
本条目介绍的是光学设备,其他领域的透镜不在此处讨论。透镜是一种将光线聚合或分散的设备,通常是由一片玻璃构成,但用于其他电磁辐射的类似设备通常也称为透镜,例如:由石蜡制成的微波透镜,用玻璃、树脂或水晶等透明材料制成的放大镜、眼镜等,也都是透镜。透镜有两类,中间厚边缘薄的叫凸透镜,中间薄边缘厚的叫凹透镜,比球面半径小许多的透镜叫薄透镜,薄透镜的几何中心叫透镜的镜心。透镜并不一定是固定形状,使用满足要求的材料来制作可以改变形状的透镜可以提高清晰度,景深,不过通过使用镜头组也能达到相同的效果,就如澳大利亚摄影师吉姆·弗雷泽(Jim Frazier)做的那样,这样做是等效的。如果你有适合形状的壳来封存洁净的可增减的水,那就能做到。欧洲有关透镜的文字记载,最早出现在古希腊,在阿里斯托芬的戏剧云彩(纪元前424年)中就提到了烧玻璃(一种凸透镜,可以汇聚太阳光来点火);以《自然史》(Naturalis Historia)一书留名后世的古罗马作家、科学家,老普林尼 (23年–79年)的文字叙述中也表示罗马帝国知道烧玻璃,并且提及矫正透镜第一个可能的用途:说是尼禄用于观看格斗比赛使用的绿宝石。(虽然可供参考的资料并不明确,但推测是改正近视的凹透镜。)他与小普林尼和小瑟内卡 (Seneca the Younger,前3年–65年)都描述充满了水的玻璃球有放大的功能。阿拉伯的数学家Ibn Sahl(c.940年–c.1000年)使用现在所知的史奈尔定律计算透镜的形状;Ibn al-Haitham(965年–1038年)撰写了第一篇光学的论文,描述透镜如何在人眼睛的视网膜上成像。最古老的人工制品是在美索不达米亚的尼尼微被挖掘出来的石英透镜,大约出现在纪元前640年。最近在维京人的港口小镇Fröjel,现在瑞典的哥特兰,进行的挖掘工作,显示在11到12世纪已经能够制造水晶透镜,而且检视其品质可以与50年代的消球差透镜相比较,维京透镜可以聚集太阳光点燃火种。眼镜大约在1280年的意大利被发明,之后透镜才被普遍的利用。尼古拉斯·库沙则被认为是第一位将凹透镜用于治疗近视的人,时间则是1451年。恩斯特·阿贝(1860年)提出的阿贝正弦条件,描述了透镜或其他光学系统要能在离开光轴的区域上产生如同在光轴上一样清晰的影像所必须要的条件。他改革了光学仪器,例如显微镜的设计,并且帮助创立了卡尔·蔡斯公司,不仅成为光学仪器的供应商,还主导了光学仪器的研究与发展。球面透镜的“球面的曲率”是恒定的,也就是透镜前面和后面的表面都分别是球形表面的一部分。每个表面可以是凸面(从透镜向外凸起)、凹面(凹陷进入透镜)或是“平面”(平坦的)。透镜前后表面的球面中心点的连线称为透镜的光轴,几乎在所有的状况下,透镜的光轴会通过透镜的物理学上的中心。非球面透镜的曲率半径随着中心轴而变化,具有更佳的曲率半径,可以维持良好的像差修正。透镜是依据两个光学表面的曲度来分类,双凸透镜(或是凸透镜)的两面都是突起的,换言之,一个透镜的两面都是凹陷的称为双凹透镜(凹透镜)。如果有一个表面是平坦的,这个透镜称为平凸透镜或平凹透镜,要由另一个表面的曲度来决定。透镜的一个表面凸起,另一个表面凹陷,称为凸凹透镜,而如果这两个面的曲度相同,则称为新月透镜。(通常,新月透镜泛指所有形式的凸凹透镜。)通过透镜两个面中心的直线叫透镜的主光轴,简称主轴或光轴;透镜的中心称为光心。如果透镜是双凸透镜或平凸透镜,一束被校准或是平行的光柱,以平行于光轴的方向前进穿过镜身后将会透镜后方汇聚(或是聚焦)在轴上的一个点,这个点称为焦点,与透镜的距离称为焦距。在这种情况下,透镜称为“正透镜”、“凸透镜”或“汇聚透镜”。由于凸透镜能汇聚光线,它可用于生火。另外,许多设备中装有凸透镜,来形成物体放大的像。如果透镜是双凹透镜或平凹透镜,一束被校准或是平行的光柱,以平行于光轴的方向前进穿过镜身后将会透镜后方扩散(或是发散)。在这种情况下,透镜称为“负透镜”、“凹透镜”或“发散透镜”。通过后发散的光线看起来像是从透镜前方光轴上的一个点发射出去的,这个点称为焦点,与透镜的距离称为焦距。与正透镜相反,其焦距是负值。由于凹透镜能发散光线,其成像较小、视野较广,常用于制作近视眼镜。如果透镜是凸凹透镜,那么是汇聚或发散透镜就要看这两个曲面表面的相对曲率来决定了。如果两者相等(新月透镜),则通过的光柱既不汇聚也不发散。对任何一个特殊的透镜,焦长可以经由制镜者方程计算而得:此处透镜曲率半径的符号是由透镜表面是汇聚或发散来决定的,这个符号用来表示变化的方式,但是在这篇文章中,R1是正值,表示第一个面是凸面,而如果R1是负值,这个面就是凹面。但在透镜后方的意义就相反了:如果R2是正值,这个面是凹面,而如果R2是负值,这个面是凸面。如果半径是无限大,这表示是一个平面。如果厚度d与曲率半径R1和R2比较是很小的数值,这个透镜称为薄透镜,而焦长f的估计值可以下面近似的公式计算得到:焦长f是正值,透镜是汇聚透镜;是负值,透镜是发散透镜;无限大,则是新月透镜。焦长的倒数1/f被称为透镜的度数,因此新月透镜的度数为0度,透镜的度是以屈光度来测量,它的单位是 (m−1).当光线由后方向前方行进时,透镜与光线由前方射入时有相同的焦长。当光线由前方进入透镜时,还有一些其他的特质,例如像差,则不一定会与光线由后方进入时相同。物体到透镜光心的距离称为物距,而物体经透镜所成的像到透镜光心的距离称为像距。则凸透镜与凹透镜的成像满足以下公式:
1
u
+
1
v
=
1
f
{displaystyle {frac {1}{u}}+{frac {1}{v}}={frac {1}{f}}}
,其中
u
{displaystyle u}
为物距,
v
{displaystyle v}
为像距,
f
{displaystyle f}
为焦距。凸透镜的成像、虚物对凹透镜的成像具体规律如下表,其中若未特别说明,则凸透镜所成像均为实像,凹透镜所成像均为虚像:物体所成像的移动方向总是与物体移动方向相同,而二者的相对速度则与相对大小有关。实物在镜前对凹透镜所成的像一律满足
v
<
f
{displaystyle v<f}
,成缩小正立的虚像,近视眼镜便是用到此原理。理论上,当光线穿过光心(optical center),应该会出现偏差(deviation)。
除了球面透镜,凸透镜、凹透镜、平凸透镜、平凹透镜、凸凹透镜的弧面都是由抛物面组成的,加上由于透镜通常是很薄的,在一定角度,光线穿过中心不会出现看得见的偏差(visible deviation)。在制造透镜的时候,弧面是经过设计的,在一定角度,光线穿过中心时,投射线与折射线会尽量变成平行。而由于透镜通常是很薄的,令近乎平行的投射线与折射线像一条直线一样。另外,相机镜头、显微镜、光学望远镜等也会用到多组透镜。
相关
- 辐射适应适应辐射(英语:Adaptive Radiation)在进化生物学中指的是从原始的一般种类演变至多种多样、各自适应于独特生活方式的专门物种(不包括亚物种,就是说它们相互之间不能交配的物种)的
- 授粉授粉(传粉)指的是裸子植物和显花植物的雄性配子,即花粉,从花药被传到雌蕊的柱头,使雌性配子受精的过程。超过80%的有花植物靠生物 (例如蜜蜂、蝴蝶、果蝠)传播花粉,其余则靠风 (例如
- 朱利安·施温格朱利安·西摩·施温格(英语:Julian Seymour Schwinger,1918年2月18日-1994年7月16日),犹太裔美国理论物理学家,量子电动力学的创始人之一,与理查德·费曼、朝永振一郎共获1965年诺贝
- 冠轮动物参见正文冠轮动物(拉丁语:Lophotrochozoa)是动物界中的一大支,属于两侧对称动物,与蜕皮动物(Ecdysozoa)组成原口动物。原口动物和后口动物(Deuterostomia)并列为两侧对称动物的两个分
- 唐纳德·格拉泽唐纳德·格拉泽(英语:Donald Arthur Glaser,全称唐纳德·阿瑟·格拉泽,1926年9月21日-2013年2月28日),美国物理学家,1960年获得诺贝尔物理学奖。1926年出生于俄亥俄州克利夫兰。1950
- 氟化物氟化物指含负价氟的有机或无机化合物。与其他卤素类似,氟生成单负阴离子(氟离子F−)。氟可与除He、Ne和Ar外的所有元素形成二元化合物。从致命毒素沙林到药品依法韦仑,从难溶的
- 泻利盐泻利盐,又名七水镁矾是一种常见的矿物,它属于不含异样正离子的水合硫酸盐。它的化学成分是七水硫酸镁(MgSO4·7H2O)。结晶时它呈斜方晶系,往往形成粒状或者皮状的晶体,很少也形成
- 引支勒《引支勒》(阿拉伯语:إنجيل,英语:Injil)是伊斯兰教认为真主安拉在不同历史时期,通过祂所选择的不同伊斯兰先知,带给人间的四大天启经典之一(其它三部是《古兰经》、《讨拉特
- 舒国治舒国治(1952年-),台湾作家、美食家。祖籍浙江奉化。毕业于世界新闻专科学校(今世新大学)电影制作科。早年从事电影工作,之后转而投入写作,作品以散文、游记、短篇小说为主。曾获得华
- 抗艾滋病抗逆转录病毒药(management of HIV/AIDS)是一类于治疗逆转录病毒(例如HIV、冠状病毒等)感染的药物。联合使用几种(通常是三种或四种)抗逆转录病毒药物被称为高效抗逆转录病毒治