平面应力

✍ dations ◷ 2025-12-07 07:57:40 #力学,机械工程

在连续介质力学中,如果一种材料的应力矢量在某一特定平面上为零,则这种材料被认为处于平面应力(Plane Stress)状态。当这种情况发生在整个结构上时,例如薄板的情况,因为应力状态可以用维数为2的张量来表示(可以用2×2矩阵而不是3×3来表示),应力分析因此被简化。另有与之相关的一个概念:平面应变,通常适用于较厚的结构部件。

平面应力的情况通常发生在薄的平板上,这些平板只受平行于它们的荷载力的作用。在某些情况下,为了应力分析的目的,也可以假定一个弯曲幅度较小的薄板具有平面应力。例如,在收到流体压力下的的薄壁圆柱体就是这种情况。在这种情况下,垂直于侧壁的应力成分与平行于侧壁的应力成分相比可以忽略不计。

在其他情况下,薄板的弯曲应力不能被忽略。人们仍然可以通过使用二维平面来简化分析,但每一点的平面应力的张量必须用弯曲项来补充。

在数学上,如果三个主应力 ( 柯西应力张量的特征张量 )之一为零,则材料中某个点的应力为平面应力。 也就是说,在笛卡尔坐标系中的应力张量具有以下形式: σ = {\displaystyle \sigma ={\begin{bmatrix}\sigma _{11}&0&0\\0&\sigma _{22}&0\\0&0&0\end{bmatrix}}\equiv {\begin{bmatrix}\sigma _{x}&0&0\\0&\sigma _{y}&0\\0&0&0\end{bmatrix}}}

例如,考虑一个长方形的块状材料,沿着它的 x {\displaystyle x} y {\displaystyle y} z {\displaystyle z} 方向上的长度分别为 10、40和5 厘米 ,通过在相应的面上施加均匀分布的分别具有大小为10 N和20 N的成对的相反力,使其在 x {\displaystyle x} 方向被拉伸在 y {\displaystyle y} 方向上被压缩。 块内的应力张量为 :

σ = {\displaystyle \sigma ={\begin{bmatrix}500\mathrm {Pa} &0&0\\0&-4000\mathrm {Pa} &0\\0&0&0\end{bmatrix}}}

更一般地,如果任意选择前两个坐标轴,但垂直方向的应力为零,则应力张量的形式为:

σ = {\displaystyle \sigma ={\begin{bmatrix}\sigma _{11}&\sigma _{12}&0\\\sigma _{21}&\sigma _{22}&0\\0&0&0\end{bmatrix}}\equiv {\begin{bmatrix}\sigma _{x}&\tau _{xy}&0\\\tau _{yx}&\sigma _{y}&0\\0&0&0\end{bmatrix}}}

因此可以用2×2矩阵来表示:

σ i j = {\displaystyle \sigma _{ij}={\begin{bmatrix}\sigma _{11}&\sigma _{12}\\\sigma _{21}&\sigma _{22}\end{bmatrix}}\equiv {\begin{bmatrix}\sigma _{x}&\tau _{xy}\\\tau _{yx}&\sigma _{y}\end{bmatrix}}}

相关

  • 慢性细菌性前列腺炎慢性细菌性前列腺炎(Chronic Bacterial Prostatitis)是前列腺炎中的其中一种类型。一般没有急性过程,起病即为慢性。症状比急性细菌性前列腺炎缓和,可是抗生素治疗所需时间更
  • 骑枪骑枪(Lance),或称骑士枪、骑兵枪,是一种骑兵用的枪类长兵器,通常被密集骑兵阵中的骑兵使用,用于冲垮对方的阵形,公元前就已经出现,到20世纪初才随着骑兵从战场上淘汰。用于战场的骑
  • 贸易利得贸易利得,又译作、、、,为英文"gain from trade"的翻译,意指在国际贸易中,两国(或延伸至多国)之间透过进出口,与两国没有进出口前相比较,所可得到的贸易利益。是近代经济学形容国际
  • 体育游戏体育类游戏或称运动类游戏,是一种让玩家模拟参与专业的体育运动项目的电视游戏或电脑游戏。该游戏类别的内容多数以较为人认识的体育赛事(例:NBA,世界杯足球赛)为蓝本。多数受欢
  • 头文字D角色列表《头文字D》是一部以山路飙车为题材的日本青年漫画,本条目主要是以地区和相关团体重要性顺序收录作品中曾出现过的主要人物。Project D不同于剧中其他的车队,这是一支专门县外
  • 祥福镇祥福镇,是中华人民共和国四川省成都市青白江区下辖的一个乡镇级行政单位。2019年12月,撤消祥福镇,将原祥福镇所辖毗河中心线以西北,原大同镇所辖大同路中心线以西南与青白江大道
  • 陈煃陈煃(16世纪-17世纪),字亦如,绍兴府山阴县人,明朝政治人物。陈煃是万历元年(1573年)的举人,十七年(1589年)成进士,获授安平知县,不久调任宝应,在漕渠工程完成后与民休息,每天征召县内子弟前
  • 何秋涛何秋涛(1824年-1862年),字原船,福建光泽人,清朝官员、学者。少负异禀,过目成诵。道光二十五年(1845年)中进士,被授予刑部主事的职位,努力从各种史料中探求俄罗斯情况及中俄历史关系,从而
  • 约翰·海伍德约翰·海伍德(英语:John Heywood,1497年-1580年),文艺复兴时期欧洲作家。其主要活动于16世纪,他写作戏剧和讽刺诗,他还在当时英国的宫廷中唱歌和演奏维金纳琴。
  • 桐谷茉莉OPPAI(2019年1月-)桐谷茉莉(日语:桐谷まつり,1996年8月15日-),日本的AV女优,秋田县出身。曾为“SOD”专属女优。现为OPPAI的专属女优。所属于“C-more Entertainment”事务所。2016年