密度矩阵重整化群

✍ dations ◷ 2025-07-01 05:12:34 #理论物理,统计力学,计算物理学

密度矩阵重整化群 (Density Matrix Renormalization Group),简称DMRG,是一种数值算法,于公元1992年由美国物理学家史提芬·怀特提出。密度矩阵重整化群是用来计算量子多体系统(例如:Hubbard model、t-J模型、海森堡模型,等等)的一个非常精准的数值算法,在一维或准一维的系统可以得到系统尺寸很大且很准确的计算结果,但是在二维的量子多体系统中却很难达到所需要的精确度。目前此算法仍无法计算三维的量子系统。

从数值计算的角度来看,量子多体物理主要的困难之处就在于系统的希尔伯特空间维度随着系统的尺寸呈指数成长,例如,一个由 N {\displaystyle N} 个自旋1/2的粒子所组成的一维晶格系统其希尔伯特空间维度大小为 2 N {\displaystyle 2^{N}} 。 传统的解决方法有两种:

史提芬·怀特最先意识到,NRG在演算Hubbard模型中的失败,是由于在NRG的迭代过程中忽略了环境对系统的影响。换句话说,NRG的重整化方法——只保留低能量本征态——并不能正确得出下一次迭代时的低能状态。
DMRG的重整化方法不同于NRG。DMRG在重整化前,把整个系统视为两个部分,一部分为系统,一部分为环境,而系统和环境的整体称为超块。接着,计算超块的基态,有了基态之后便计算约化密度矩阵,然后对角化这个约化密度矩阵,选出拥有较大的本征值的本征态。这些拥有较大的本征值的本征态正是基态性质最重要的态,然后根据此标准对系统部分做重整化。

实际实行DMRG是一个很冗长的工作,一些主要常用的计算手段如下:

如缺少上述的一些计算手段,DMRG可能难以完成对实际物理模型的演算。

DMRG 已经成功的在许多不同的一维模型上计算低能态的一些性质,如易辛模型,海森保模型等自旋模型,费米子系统如 Hubbard 模型 ,杂质系统如近藤效应,玻色子系统,混合玻色子与费米子的系统。随着现代电脑硬件技术的进步,DMRG应用在二维系统上可行性愈来愈高,目前一般的作法是将二维系统视为一个多腿的梯子,再将梯子的长度拉长。2011年发表在《Science》封面的一篇文章中,利用 DMRG 探讨二维Kagome晶格中的自旋-1/2系统的基态。由这篇文章来看, DMRG 可能仍是对付二维系统最强大的武器。

DMRG之所以在一维系统中如此成功,背后的理论可以用矩阵积态来加以解释。有限尺度的DMRG中,扫荡的过程等同于将此系统的波函数写在矩阵积态空间做变分法。以自旋-1/2的系统为例,矩阵积态如以下形式:

| Φ = σ 1 σ N ( A 1 A 2 A n A N 1 A N ) | σ 1 σ 2 σ N {\displaystyle |\Phi \rangle =\sum _{\sigma _{1}\cdots \sigma _{N}}(A_{1}^{}A_{2}^{}\cdots A_{n}^{}\cdots A_{N-1}^{}A_{N}^{})|\sigma _{1}\sigma _{2}\cdots \sigma _{N}\rangle }

其中 σ 1 σ 2 σ N {\displaystyle \sigma _{1}\sigma _{2}\cdots \sigma _{N}} 表示每一个格点上自旋 z {\displaystyle z} 方向的分量, A i {\displaystyle A_{i}^{}} 表示第 i {\displaystyle i} 格点、自旋 z {\displaystyle z} 方向的分量为 σ i {\displaystyle \sigma _{i}} 的矩阵。 A 1 {\displaystyle A_{1}^{}} 矩阵大小是1×d、 A 2 {\displaystyle A_{2}^{}} 矩阵大小是d×d2、 A 3 {\displaystyle A_{3}^{}} 矩阵大小是d2×d3、……直到第 n {\displaystyle n} 格点时,dn≥m, A n {\displaystyle A_{n}^{}} 矩阵大小是dn-1×m、 A n + 1 {\displaystyle A_{n+1}^{}} 矩阵大小是m×m、……, A N 1 {\displaystyle A_{N-1}^{}} 矩阵大小是d2×d、 A N {\displaystyle A_{N}^{}} 矩阵大小是d×1。当m趋近无穷大时,所有的波函数皆可写成矩阵积态的形式。

DMRG的巨大成功带给人们许多冲击与启示,可惜的是由于波函数被表示成矩阵积态(Matrix Product State),造成DMRG在处理二维量子晶格系统时特别困难,更别说是三维的量子系统。继承DMRG的知识和技术,许多物理学家着手发展适合研究二维甚至三维系统中的数值方法,例如:TEBD(Time-evolving block decimation)、PEPS(Projected Entangled Pair States)、MERA(multi-scale entanglement renormalization ansatz),等等。另一方面,也有许多物理学家在原有的DMRG方法上加以改良,让科学家可以处理更多有趣的一维量子晶格系统的问题,例如:时间演化、有限温度,等等。

相关

  • 磷酸单酯水解酶类磷酸单酯水解酶(英语:Phosphoric monoester hydrolases或 phosphomonoesterases)是一种催化O-P键水解的酶,利用半胱氨酸残基或金属离子攻击磷原子来进行亲核取代反应。这类酶的E
  • 星系的形成和演化在天文物理学中,有关星系形成和演化的问题有:星系是如何形成的,依然是天文物理学中最活跃的一个研究领域,并且继续延伸至星系演化的领域。从宇宙微波背景辐射的观测已经证实,在宇
  • 沙特里亚尔里亚尔(阿拉伯语: ريال,货币编号:SAR)是沙特阿拉伯的流通货币。辅币单位哈拉拉,1里亚尔=100哈拉拉。沙特里亚尔与美元之间采取固定汇率制,1美元=3.75沙特里亚尔。
  • 兽形纲合弓纲(Synapsida)意为“固定的颧弓”,也被称成兽形纲(Theropsida),是羊膜动物的一纲,包含羊膜动物中所有与哺乳类关系较近的物种。合弓纲是羊膜动物的两个主要演化支之一,另一个演
  • 染色体互换染色体互换(英语:Chromosomal crossover)也称互换,又译染色体交换。是指两条染色体在减数分裂第一前期进行配对时,部分的DNA发生交换。互换通常是某一染色体的一部分断裂,并接到另
  • 自激振荡自激振荡(英语:Self-exciting oscillation)是出现在工程、经济及生物学中的现象。自激振荡的理论基础是由亚历山大·安德罗诺夫在1928年提出。自激振荡是一个以时间延迟微分方
  • 尤金尼·伯德尤金尼·伯德(英语:Eugene Byrd,1975年8月28日-)出生于美国宾夕法尼亚州费城,为美国男演员。1975年,伯德出生在美国宾夕法尼亚州费城。伯德的著名作品有《狂蟒之灾2》、《机器鸡》
  • 周村 (中将)周村(1926年-)原名周祖华,今河南省信阳市浉河区谭家河乡人,中国人民解放军中将。1939年参加中国共产党领导的革命,1942年加入中国共产党。抗日战争时期,历任新四军第五师二分军区第
  • 奕纲亦纲(1826年11月22日-1827年3月5日),爱新觉罗氏,清朝道光帝第二子。奕纲生于道光六年(1826年)十月廿三,生母是静贵人博尔济吉特氏,是奕䜣的同母哥哥。道光七年(1827年)。咸丰帝即位后,追
  • 睡莲睡莲(学名:)又称子午莲、水芹花、瑞莲、水洋花或小莲花,是属于睡莲目睡莲科睡莲属的水生植物。多年生水生草本,外型与荷花相似,不同的是荷花的叶子和花挺出水面,而睡莲的叶子和花浮