文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程(通常进行分析,同时加上一些派生语言特征以及消除杂音,随后插入到数据库中) ,产生结构化数据,并最终评价和解释输出。'高质量'的文本挖掘通常是指某种组合的相关性,新颖性和趣味性。典型的文本挖掘方法包括文本分类,文本聚类,概念/实体挖掘,生产精确分类,观点分析,文档摘要和实体关系模型(即,学习已命名实体之间的关系) 。文本分析包括了信息检索、词典分析来研究词语的频数分布、模式识别、标签\注释、信息抽取,数据挖掘技术包括链接和关联分析、可视化和预测分析。本质上,首要的任务是,通过自然语言处理(NLP)和分析方法,将文本转化为数据进行分析。
劳工密集型的人工纯文字挖掘方法最早出现在20世纪80年代中期,但在过去的十年中,技术的进步已经使这一领域迅速获取进展。文本挖掘已经是信息检索、数据挖掘、机器学习、统计以及计算语言学等学科中的重要领域。由于当前的大多数信息(80%)是以文本的形式来保存,文本挖掘被认为具有较高的商业潜在价值。
多语种数据挖掘已经越来越多的引起人们的兴趣:能够根据自己的意愿从跨语种的文字来源中挖掘出有用的信息。
许多文本挖掘的软件包是面对安全设备的。它们多数是出于国家安全的的目的,监控和分析类似于互联网新闻、博客等的在线纯文本。 对文本挖掘的研究还被包含在文本解密的领域中。
Weka工具 http://www.cs.waikato.ac.nz/ml/weka/