在数学和自动控制领域中,李雅普诺夫稳定性(英语:Lyapunov stability,或李亚普诺夫稳定性)可用来描述一个动力系统的稳定性。如果此动力系统任何初始条件在 () = 0,则常数函数:x = a是动力系统的驻定解(或称平衡解)。称a是动力系统的平衡点。
它们的直观几何意义是:
设有状态函数x,其初始取值为 : → 使得
则称为李雅普诺夫候选函数(Lyapunov function candidate),且系统(依李雅普诺夫的观点)为渐近稳定。
上式中 、、、或。这种系统的研究是控制理论研究的主题之一,也应用在控制工程中。
对于有输入的系统,需量化输入对系统稳定性的影响。在线性系统中会用BIBO稳定性来作分析的工具,在非线性系统中则会使用输入-状态稳定性。