首页 >
柯西定理
✍ dations ◷ 2025-04-04 11:07:23 #柯西定理
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个单连通的开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。设
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的一个分段可求长的简单闭曲线(即连续而不自交并且能定义长度的闭合曲线),那么:Ω
{displaystyle Omega }
是单连通表示
Ω
{displaystyle Omega }
中没有“洞”,例如任何一个开圆盘
D
=
{
z
:
|
z
−
z
0
|
<
r
}
{displaystyle D={z:|z-z_{0}|<r}}
都符合条件,这个条件是很重要的,考虑中央有“洞”的圆盘:
D
h
=
{
z
:
0
<
|
z
−
z
0
|
<
2
}
{displaystyle D_{h}={z:0<|z-z_{0}|<2}}
,在其中取逆时针方向的单位圆路径:考虑函数
f
:
z
↦
1
/
z
{displaystyle f;:;z;mapsto ;1/z}
,它在
D
h
{displaystyle D_{h}}
中是全纯函数,但它的路径积分:不等于零。这是因为函数
f
{displaystyle f}
在“洞”中有奇点。如果考虑整个圆盘
D
s
=
{
z
:
|
z
−
z
0
|
<
2
}
{displaystyle D_{s}={z:|z-z_{0}|<2}}
,就会发现
f
{displaystyle f}
在圆盘中央的点上没有定义,不是全纯函数。:419柯西积分定理有若干个等价的叙述。例如:
设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个定义在
Ω
{displaystyle Omega }
上的函数。设
γ
1
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{1};:;;rightarrow Omega }
与
γ
2
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{2};:;;rightarrow Omega }
是
Ω
{displaystyle Omega }
内的两条可求长的简单曲线,它们的起点和终点都重合:并且函数
f
{displaystyle f}
在
γ
1
{displaystyle gamma _{1}}
与
γ
2
{displaystyle gamma _{2}}
围成的闭合区域
D
{displaystyle D}
内是全纯函数,那么函数
f
{displaystyle f}
沿这两条曲线的路径积分相同:除了对分段可求长的简单闭合曲线成立以外,柯西积分定理对于某些更复杂的曲线也适用。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数。无论
Ω
{displaystyle Omega }
内的曲线
γ
{displaystyle gamma }
是自交还是卷绕数多于1(围着某一点转了不止一圈),只要
γ
{displaystyle gamma }
能够通过连续形变收缩为
Ω
{displaystyle Omega }
内的一点,就有:以下的证明对函数有较为严格的要求,但对物理学中的应用来说已经足够。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数,
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的可求长的简单闭合曲线。假设
f
{displaystyle f}
的一阶偏导数也在
Ω
{displaystyle Omega }
上连续,那么可以根据格林定理作出证明。具体如下:为了便于表达,将函数
f
{displaystyle f}
写为实部函数和虚部函数:
f
(
z
)
=
f
(
x
+
y
i
)
=
u
(
x
+
y
i
)
+
i
v
(
x
+
y
i
)
.
{displaystyle f(z)=f(x+yi)=u(x+yi)+i,v(x+yi).}
由于
d
z
=
d
x
+
i
d
y
{displaystyle displaystyle dz=dx+i,dy}
,积分依据格林定理,右端的两个环路积分都可以变形为
γ
{displaystyle gamma }
围成的区域
D
γ
{displaystyle D_{gamma }}
上的面积分。另一方面,由于
f
{displaystyle f}
是全纯函数,所以它的实部函数和虚部函数满足柯西-黎曼方程:所以以上的两个积分中的被积函数都是0,因而积分也是0:该定理的一个直接推论,是在单连通域内全纯函数的路径积分可以用类似于微积分基本定理的方法来计算:设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。函数
f
{displaystyle f}
在
Ω
{displaystyle Omega }
内的路径积分,只与积分的起点和终点有关,与中间经历的路径无关。假设,起点为.mw-parser-output .serif{font-family:Times,serif}a,则可以定义一个函数
F
:
Ω
→
C
{displaystyle F;:;Omega ;rightarrow ;mathbb {C} }其中的
γ
a
b
{displaystyle gamma _{a}^{b}}
可以是任何以a为起点,b为终点的分段可求长简单曲线。函数
F
{displaystyle F}
被称为
f
{displaystyle f}
的(复)原函数或反导数函数。:422柯西积分定理与柯西积分公式是等价的。从柯西积分定理可以推导出柯西积分公式和留数定理。
相关
- 链球菌等链球菌(学名:Streptococcus)是一类球形的革兰氏阳性细菌,属于厚壁菌门的一个属。这些细菌细胞分裂时总是沿一个轴,所以通常成对或者链状的。因为这些特征,他们被称作“链球菌”,
- 下载下载在计算机网络中指从一个远程系统接收数据,该系统通常为一个服务器,例如网页服务器、FTP服务器、电子邮件服务器,或者其他的类似系统。与之相对的是上传(也称上传),它是指将数
- 有效群体大小在群体遗传学中,美国遗传学家休厄尔·赖特在两篇标志性的论文(Wright 1931, 1938)中引入了有效群体大小(effective population size,又做有效种群大小)这一概念。他定义其为“在一
- 清教徒清教徒(英语:Puritan)是指要求清除英国国教会内保有罗马公教会仪式的改革派新教徒,此字词于16世纪60年代开始使用,源于拉丁文的Purus,意为清洁。清教徒信奉加尔文主义公理宗的教条
- 生态学家生态学(德语:Ökologie),是德国生物学家恩斯特·海克尔于1866年定义的一个概念:生态学是研究生物体与其周围环境(包括非生物环境和生物环境)相互关系的科学。德语Ökologie(最初:Oeco
- 40味觉感受器,类型2,成员40,TAS2R40是一个人类基因组中TAS2R40基因编码的蛋白质,是苦味味觉感受器的一员。TAS2R40引用了美国国家医学图书馆提供的资料,这些资料属于公共领域。
- 水表水表(英语:Water meter),或称水表、水量计、量水器,是一种测量水的使用量的装置。常见于自来水的用户端,其度数用以计算水费的依据。水表通常总测量单位为立方英尺(ft³)或是立方米(m
- 特纳迈克尔·S·特纳(英语:Michael S. Turner,1949年7月29日-),美国理论宇宙学家,1998年提出了暗能量(dark energy)这一术语。迈克尔·特纳1971年获得加州理工学院物理学专业理学士学位。
- 菊池线菊池线可以指:
- 土库曼人土库曼斯坦:4,150,000 伊拉克:1,500,000 伊朗:2,000,000 阿富汗:500,000土库曼族(土库曼语:Türkmenler Түркменлер)是一个中亚突厥语民族,土库曼斯坦主要民族,也