柯西定理

✍ dations ◷ 2024-11-06 03:38:59 #柯西定理
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.设 Ω {displaystyle Omega } 是复平面 C {displaystyle mathbb {C} } 的一个单连通的开子集。 f : Ω → C {displaystyle f;:;Omega ;rightarrow ;mathbb {C} } 是一个 Ω {displaystyle Omega } 上的全纯函数。设 γ {displaystyle gamma } 是 Ω {displaystyle Omega } 内的一个分段可求长的简单闭曲线(即连续而不自交并且能定义长度的闭合曲线),那么:Ω {displaystyle Omega } 是单连通表示 Ω {displaystyle Omega } 中没有“洞”,例如任何一个开圆盘 D = { z : | z − z 0 | < r } {displaystyle D={z:|z-z_{0}|<r}} 都符合条件,这个条件是很重要的,考虑中央有“洞”的圆盘: D h = { z : 0 < | z − z 0 | < 2 } {displaystyle D_{h}={z:0<|z-z_{0}|<2}} ,在其中取逆时针方向的单位圆路径:考虑函数 f : z ↦ 1 / z {displaystyle f;:;z;mapsto ;1/z} ,它在 D h {displaystyle D_{h}} 中是全纯函数,但它的路径积分:不等于零。这是因为函数 f {displaystyle f} 在“洞”中有奇点。如果考虑整个圆盘 D s = { z : | z − z 0 | < 2 } {displaystyle D_{s}={z:|z-z_{0}|<2}} ,就会发现 f {displaystyle f} 在圆盘中央的点上没有定义,不是全纯函数。:419柯西积分定理有若干个等价的叙述。例如: 设 Ω {displaystyle Omega } 是复平面 C {displaystyle mathbb {C} } 的一个开子集。 f : Ω → C {displaystyle f;:;Omega ;rightarrow ;mathbb {C} } 是一个定义在 Ω {displaystyle Omega } 上的函数。设 γ 1 : [ 0 , 1 ] → Ω {displaystyle gamma _{1};:;;rightarrow Omega } 与 γ 2 : [ 0 , 1 ] → Ω {displaystyle gamma _{2};:;;rightarrow Omega } 是 Ω {displaystyle Omega } 内的两条可求长的简单曲线,它们的起点和终点都重合:并且函数 f {displaystyle f} 在 γ 1 {displaystyle gamma _{1}} 与 γ 2 {displaystyle gamma _{2}} 围成的闭合区域 D {displaystyle D} 内是全纯函数,那么函数 f {displaystyle f} 沿这两条曲线的路径积分相同:除了对分段可求长的简单闭合曲线成立以外,柯西积分定理对于某些更复杂的曲线也适用。设 Ω {displaystyle Omega } 是复平面 C {displaystyle mathbb {C} } 的一个开子集。 f : Ω → C {displaystyle f;:;Omega ;rightarrow ;mathbb {C} } 是定义在 Ω {displaystyle Omega } 上的全纯函数。无论 Ω {displaystyle Omega } 内的曲线 γ {displaystyle gamma } 是自交还是卷绕数多于1(围着某一点转了不止一圈),只要 γ {displaystyle gamma } 能够通过连续形变收缩为 Ω {displaystyle Omega } 内的一点,就有:以下的证明对函数有较为严格的要求,但对物理学中的应用来说已经足够。设 Ω {displaystyle Omega } 是复平面 C {displaystyle mathbb {C} } 的一个开子集。 f : Ω → C {displaystyle f;:;Omega ;rightarrow ;mathbb {C} } 是定义在 Ω {displaystyle Omega } 上的全纯函数, γ {displaystyle gamma } 是 Ω {displaystyle Omega } 内的可求长的简单闭合曲线。假设 f {displaystyle f} 的一阶偏导数也在 Ω {displaystyle Omega } 上连续,那么可以根据格林定理作出证明。具体如下:为了便于表达,将函数 f {displaystyle f} 写为实部函数和虚部函数: f ( z ) = f ( x + y i ) = u ( x + y i ) + i v ( x + y i ) . {displaystyle f(z)=f(x+yi)=u(x+yi)+i,v(x+yi).} 由于 d z = d x + i d y {displaystyle displaystyle dz=dx+i,dy} ,积分依据格林定理,右端的两个环路积分都可以变形为 γ {displaystyle gamma } 围成的区域 D γ {displaystyle D_{gamma }} 上的面积分。另一方面,由于 f {displaystyle f} 是全纯函数,所以它的实部函数和虚部函数满足柯西-黎曼方程:所以以上的两个积分中的被积函数都是0,因而积分也是0:该定理的一个直接推论,是在单连通域内全纯函数的路径积分可以用类似于微积分基本定理的方法来计算:设 Ω {displaystyle Omega } 是复平面 C {displaystyle mathbb {C} } 的一个开子集。 f : Ω → C {displaystyle f;:;Omega ;rightarrow ;mathbb {C} } 是一个 Ω {displaystyle Omega } 上的全纯函数。函数 f {displaystyle f} 在 Ω {displaystyle Omega } 内的路径积分,只与积分的起点和终点有关,与中间经历的路径无关。假设,起点为.mw-parser-output .serif{font-family:Times,serif}a,则可以定义一个函数 F : Ω → C {displaystyle F;:;Omega ;rightarrow ;mathbb {C} }其中的 γ a b {displaystyle gamma _{a}^{b}} 可以是任何以a为起点,b为终点的分段可求长简单曲线。函数 F {displaystyle F} 被称为 f {displaystyle f} 的(复)原函数或反导数函数。:422柯西积分定理与柯西积分公式是等价的。从柯西积分定理可以推导出柯西积分公式和留数定理。

相关

  • 丁氨苯丙酮安非他酮(国际非专利药品名称:Bupropion,旧名:amfebutamone) 或 盐酸安非他酮,商品名威博隽(Wellbutrin),是一种主要作为抗抑郁药和戒烟药使用的药物、也可用作治疗注意力不足过动症
  • 磺胺甲氧甲嘧啶磺胺甲氧甲嘧啶是一种长效磺胺类药物,其INN名称是“Sulfametomidine”。该药物可用于治疗由细菌感染引发的疾病等病症。该药物在血液中的半衰期尚不明确。该药物依化学本质可
  • 诺齐克罗伯特·诺齐克(Robert Nozick, 1938年11月16日-2002年1月23日)是美国的哲学家,也是哈佛大学的教授。1938年生于纽约的布鲁克林区,父亲是来自俄罗斯的犹太人企业家。他毕业于哥伦
  • 电镀电镀(英文:Electroplating)是利用电解的原理将导电体铺上一层金属的方法。除了导电体以外,电镀亦可用于经过特殊处理的塑胶上。电镀有分镀铬、镀锌、镀铜、镀镍等。电镀的主要
  • 椰子椰(学名:Cocos nucifera)是棕榈科椰属的唯一种大型植物,椰子是椰树的果实,是一种在热带地区很普及的果实。椰子树的普及也在于其果实椰子可以在海中随风浪漂流上千公里后落地生根
  • 5-HTsub4/sub336015562ENSG00000164270ENSMUSG00000026322Q13639P97288NR_104445、NM_000870、NM_001040169、NM_001040172、NM_001040173、NM_001040174、NM_001286410、NM_199453NM_00
  • 疫苗施打疫苗接种,是将疫苗制剂接种到人或动物体内的技术,使接受方获得抵抗某一特定或与疫苗相似病原的免疫力,借由免疫系统对外来物的辨认,进行抗体的筛选和制造,以产生对抗该病原或相似
  • 国家人口和计划生育委员会1999年规定:印章直径5厘米,中央刊国徽,由国务院制发中华人民共和国国家人口和计划生育委员会(2003—2013,简称国家人口计生委),原称国家计划生育委员会(1981—2003,简称国家计生委),曾
  • 捻翅目捻翅目(Strepsiptera),亦作撚翅目或
  • 热电发电热传导发电机,也称为塞贝克发电器,是运用热电效应(塞贝克效应)将热(温度差)直接转换成电能的一种装置。大致上转换效率约为5-8%。基于赛贝克效应的旧式装置使用双金属接面,并且非常