首页 >
柯西定理
✍ dations ◷ 2025-04-26 13:12:29 #柯西定理
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个单连通的开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。设
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的一个分段可求长的简单闭曲线(即连续而不自交并且能定义长度的闭合曲线),那么:Ω
{displaystyle Omega }
是单连通表示
Ω
{displaystyle Omega }
中没有“洞”,例如任何一个开圆盘
D
=
{
z
:
|
z
−
z
0
|
<
r
}
{displaystyle D={z:|z-z_{0}|<r}}
都符合条件,这个条件是很重要的,考虑中央有“洞”的圆盘:
D
h
=
{
z
:
0
<
|
z
−
z
0
|
<
2
}
{displaystyle D_{h}={z:0<|z-z_{0}|<2}}
,在其中取逆时针方向的单位圆路径:考虑函数
f
:
z
↦
1
/
z
{displaystyle f;:;z;mapsto ;1/z}
,它在
D
h
{displaystyle D_{h}}
中是全纯函数,但它的路径积分:不等于零。这是因为函数
f
{displaystyle f}
在“洞”中有奇点。如果考虑整个圆盘
D
s
=
{
z
:
|
z
−
z
0
|
<
2
}
{displaystyle D_{s}={z:|z-z_{0}|<2}}
,就会发现
f
{displaystyle f}
在圆盘中央的点上没有定义,不是全纯函数。:419柯西积分定理有若干个等价的叙述。例如:
设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个定义在
Ω
{displaystyle Omega }
上的函数。设
γ
1
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{1};:;;rightarrow Omega }
与
γ
2
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{2};:;;rightarrow Omega }
是
Ω
{displaystyle Omega }
内的两条可求长的简单曲线,它们的起点和终点都重合:并且函数
f
{displaystyle f}
在
γ
1
{displaystyle gamma _{1}}
与
γ
2
{displaystyle gamma _{2}}
围成的闭合区域
D
{displaystyle D}
内是全纯函数,那么函数
f
{displaystyle f}
沿这两条曲线的路径积分相同:除了对分段可求长的简单闭合曲线成立以外,柯西积分定理对于某些更复杂的曲线也适用。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数。无论
Ω
{displaystyle Omega }
内的曲线
γ
{displaystyle gamma }
是自交还是卷绕数多于1(围着某一点转了不止一圈),只要
γ
{displaystyle gamma }
能够通过连续形变收缩为
Ω
{displaystyle Omega }
内的一点,就有:以下的证明对函数有较为严格的要求,但对物理学中的应用来说已经足够。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数,
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的可求长的简单闭合曲线。假设
f
{displaystyle f}
的一阶偏导数也在
Ω
{displaystyle Omega }
上连续,那么可以根据格林定理作出证明。具体如下:为了便于表达,将函数
f
{displaystyle f}
写为实部函数和虚部函数:
f
(
z
)
=
f
(
x
+
y
i
)
=
u
(
x
+
y
i
)
+
i
v
(
x
+
y
i
)
.
{displaystyle f(z)=f(x+yi)=u(x+yi)+i,v(x+yi).}
由于
d
z
=
d
x
+
i
d
y
{displaystyle displaystyle dz=dx+i,dy}
,积分依据格林定理,右端的两个环路积分都可以变形为
γ
{displaystyle gamma }
围成的区域
D
γ
{displaystyle D_{gamma }}
上的面积分。另一方面,由于
f
{displaystyle f}
是全纯函数,所以它的实部函数和虚部函数满足柯西-黎曼方程:所以以上的两个积分中的被积函数都是0,因而积分也是0:该定理的一个直接推论,是在单连通域内全纯函数的路径积分可以用类似于微积分基本定理的方法来计算:设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。函数
f
{displaystyle f}
在
Ω
{displaystyle Omega }
内的路径积分,只与积分的起点和终点有关,与中间经历的路径无关。假设,起点为.mw-parser-output .serif{font-family:Times,serif}a,则可以定义一个函数
F
:
Ω
→
C
{displaystyle F;:;Omega ;rightarrow ;mathbb {C} }其中的
γ
a
b
{displaystyle gamma _{a}^{b}}
可以是任何以a为起点,b为终点的分段可求长简单曲线。函数
F
{displaystyle F}
被称为
f
{displaystyle f}
的(复)原函数或反导数函数。:422柯西积分定理与柯西积分公式是等价的。从柯西积分定理可以推导出柯西积分公式和留数定理。
相关
- 冠状病毒冠状病毒亚科(英语:Coronavirus)是一类在动物与人类之间传播的人畜共患的RNA病毒。冠状病毒可感染哺乳动物、鸟类,引起牛和猪的消化道疾病或鸡的上呼吸道疾病。自然界常见,已知可
- 公共经济学公共经济学(英语:Public economics)为经济学的一支,过去多以财政学命名,然就近代经济学发展而言,财政学一词已无法涵盖其学说内容,近代也有人称之为公共部门经济学(public sector ec
- 法特萨法特萨是土耳其的城镇,由奥尔杜省负责管辖,位于该国北部黑海沿岸,面积570平方公里,海拔高度10米,主要经济活动有农业和渔业,2009年人口99,684。
- dsRNA核糖核酸病毒(英语:RNA virus),又称RNA病毒,其遗传物质为RNA,这些核糖核酸通常是单链RNA(ssRNA),但是也可能是双链RNA(dsRNA)。由RNA病毒感染造成的著名人类疾病包括艾滋病(AIDS)、埃博
- 马丁·路德马丁·路德(德语:Martin Luther,1483年11月10日-1546年2月18日),神圣罗马帝国教会司铎兼神学教授,于十六世纪初发动了德意志宗教改革,最终是全欧洲的宗教改革 促成基督新教的兴起。
- 吉森尤斯图斯-李比希大学吉森大学,全称吉森尤斯图斯-李比希大学(德语:Justus-Liebig-Universität Gießen,缩写为JLU),是一所位于德国黑森州吉森的公立大学,1607年由黑森-达姆施塔特伯爵路德维希五世(德语:L
- 林园石化工业区林园工业区是位于台湾高雄市林园区的一个以石油化学工业为主的工业区,完工于1975年,园区共占地403.2公顷。该工业区位于高屏溪西岸、林园大排水沟两侧。工业区内有中美和、拜
- 白细胞介素免疫治疗n/an/an/an/an/an/an/an/an/an/a白细胞介素2 (英语:Interleukin 2,IL-2)是细胞因子中白细胞介素的一种,在免疫系统中起重要作用。它是一种蛋白质,负责调节白细胞(白细胞,通常是淋
- 麦穗麦可以指:
- ǀ̃齿鼻搭嘴音(Dental nasal click)是一种辅音,主要出现于南非的一些口语中。表示此音的国际音标(IPA)是⟨ǀ̃⟩或⟨ᵑǀ⟩,亦有部分语言学家偏好使用已废弃的音标⟨ʇ̃⟩或⟨ᵑʇ