首页 >
柯西定理
✍ dations ◷ 2025-09-18 19:32:41 #柯西定理
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个单连通的开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。设
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的一个分段可求长的简单闭曲线(即连续而不自交并且能定义长度的闭合曲线),那么:Ω
{displaystyle Omega }
是单连通表示
Ω
{displaystyle Omega }
中没有“洞”,例如任何一个开圆盘
D
=
{
z
:
|
z
−
z
0
|
<
r
}
{displaystyle D={z:|z-z_{0}|<r}}
都符合条件,这个条件是很重要的,考虑中央有“洞”的圆盘:
D
h
=
{
z
:
0
<
|
z
−
z
0
|
<
2
}
{displaystyle D_{h}={z:0<|z-z_{0}|<2}}
,在其中取逆时针方向的单位圆路径:考虑函数
f
:
z
↦
1
/
z
{displaystyle f;:;z;mapsto ;1/z}
,它在
D
h
{displaystyle D_{h}}
中是全纯函数,但它的路径积分:不等于零。这是因为函数
f
{displaystyle f}
在“洞”中有奇点。如果考虑整个圆盘
D
s
=
{
z
:
|
z
−
z
0
|
<
2
}
{displaystyle D_{s}={z:|z-z_{0}|<2}}
,就会发现
f
{displaystyle f}
在圆盘中央的点上没有定义,不是全纯函数。:419柯西积分定理有若干个等价的叙述。例如:
设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个定义在
Ω
{displaystyle Omega }
上的函数。设
γ
1
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{1};:;;rightarrow Omega }
与
γ
2
:
[
0
,
1
]
→
Ω
{displaystyle gamma _{2};:;;rightarrow Omega }
是
Ω
{displaystyle Omega }
内的两条可求长的简单曲线,它们的起点和终点都重合:并且函数
f
{displaystyle f}
在
γ
1
{displaystyle gamma _{1}}
与
γ
2
{displaystyle gamma _{2}}
围成的闭合区域
D
{displaystyle D}
内是全纯函数,那么函数
f
{displaystyle f}
沿这两条曲线的路径积分相同:除了对分段可求长的简单闭合曲线成立以外,柯西积分定理对于某些更复杂的曲线也适用。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数。无论
Ω
{displaystyle Omega }
内的曲线
γ
{displaystyle gamma }
是自交还是卷绕数多于1(围着某一点转了不止一圈),只要
γ
{displaystyle gamma }
能够通过连续形变收缩为
Ω
{displaystyle Omega }
内的一点,就有:以下的证明对函数有较为严格的要求,但对物理学中的应用来说已经足够。设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是定义在
Ω
{displaystyle Omega }
上的全纯函数,
γ
{displaystyle gamma }
是
Ω
{displaystyle Omega }
内的可求长的简单闭合曲线。假设
f
{displaystyle f}
的一阶偏导数也在
Ω
{displaystyle Omega }
上连续,那么可以根据格林定理作出证明。具体如下:为了便于表达,将函数
f
{displaystyle f}
写为实部函数和虚部函数:
f
(
z
)
=
f
(
x
+
y
i
)
=
u
(
x
+
y
i
)
+
i
v
(
x
+
y
i
)
.
{displaystyle f(z)=f(x+yi)=u(x+yi)+i,v(x+yi).}
由于
d
z
=
d
x
+
i
d
y
{displaystyle displaystyle dz=dx+i,dy}
,积分依据格林定理,右端的两个环路积分都可以变形为
γ
{displaystyle gamma }
围成的区域
D
γ
{displaystyle D_{gamma }}
上的面积分。另一方面,由于
f
{displaystyle f}
是全纯函数,所以它的实部函数和虚部函数满足柯西-黎曼方程:所以以上的两个积分中的被积函数都是0,因而积分也是0:该定理的一个直接推论,是在单连通域内全纯函数的路径积分可以用类似于微积分基本定理的方法来计算:设
Ω
{displaystyle Omega }
是复平面
C
{displaystyle mathbb {C} }
的一个开子集。
f
:
Ω
→
C
{displaystyle f;:;Omega ;rightarrow ;mathbb {C} }
是一个
Ω
{displaystyle Omega }
上的全纯函数。函数
f
{displaystyle f}
在
Ω
{displaystyle Omega }
内的路径积分,只与积分的起点和终点有关,与中间经历的路径无关。假设,起点为.mw-parser-output .serif{font-family:Times,serif}a,则可以定义一个函数
F
:
Ω
→
C
{displaystyle F;:;Omega ;rightarrow ;mathbb {C} }其中的
γ
a
b
{displaystyle gamma _{a}^{b}}
可以是任何以a为起点,b为终点的分段可求长简单曲线。函数
F
{displaystyle F}
被称为
f
{displaystyle f}
的(复)原函数或反导数函数。:422柯西积分定理与柯西积分公式是等价的。从柯西积分定理可以推导出柯西积分公式和留数定理。
相关
- 頭头在解剖学上是指动物的吻端部分,通常包括脑、眼、耳、鼻、口等器官(所有这些器官都支撑着各种感官功能,如视觉、听觉、嗅觉、味觉)。有些非常低等的动物可能没有头部,但多数两侧
- 直流电直流电(Direct current),通常情况下通过整流器等电子元件使电流只向一个方向流动,将其从交流电转化为直流电。第一个商业化的电力传输是由托马斯·爱迪生在十九世纪后期开发的11
- 耶利哥耶利哥或耶律哥(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","
- 科布县科布县(英语:Cobb County)是位于美国佐治亞州的一个县,成立于1832年12月3日。根据2000年人口普查,科布县的人口有607,751人,且不断增长。2006年,美国人口调查局估计人口为679,325人
- 禁运禁运在商业和政治中,是指与一个国家停止贸易和商业往来,令该国家被孤立。禁运通常是某一国或某一国际组织对另一国的惩罚,原因包括两方在某些政策上的不同意见,或是违反国际法、
- 2,3-丁二醇2,3-丁二醇(英语:2,3-Butanediol)是化学式为(CH3CHOH)2的二元醇,带有两个手性碳原子,其中的(2R,3S)-2,3-丁二醇为内消旋化合物,因此总共有三种立体异构体。三种2,3-丁二醇在物理性
- 水产养殖业水产养殖(或称养殖渔业)是水产业的一种,系利用天然水面或人造池塭,放养经济价值较高之鱼类、贝类、甲壳类及藻类等之种苗,施与饵料,驱除病害,使其成长迅速,进而进行人工繁殖之有计划
- β氧化β-氧化指的是脂肪酸氧化分解,最终产生乙酰辅酶A(Acetyl-CoA)和酮体的过程。就和脂肪酸合成一样,脂肪酸的分解也是逐步进行的。脂肪酸首先变成Acyl-CoA的活化形式。接下来反应有
- 挥发油精油(essential oil)是一种芳香物质,一般是从植物中萃取出来的芳香分子,为香水、调味料、化妆品等工业的重要产品,以及芳香疗法(aromatherapy)的主要原料。精油通常使用水蒸气蒸馏
- 大屠杀列表本列表按照发生年代的先后顺序列举世界历史上发生的大屠杀。