群同构

✍ dations ◷ 2025-11-03 23:20:18 #群论,态射

在抽象代数中,群同构是在两个群之间的函数,它以关照到了群运算的方式架设了在群的元素之间的一一对应。如果两个群之间存在一个同构,则这两个群叫做同构的。从群论的立场看,同构的群有相同的性质而不需要区分。

给定两个群 (G, *) 和 (H, {\displaystyle \odot } 次幂到 次幂

对于所有 uG,并且逆映射 f 1 : H G {\displaystyle f^{-1}:H\rightarrow G} 也是群同构。

“同构”关系满足等价关系的所有公理。如果 f 是在两个群 GH 之间的同构,则关于 G 的只与群结构有关的所有为真的事情都可以通过 f 转换成关于 H 的同样为真的陈述,反之亦然。

从群 (G,*) 到自身的同构叫做这个群的自同构。就是说这是双射 f : G G {\displaystyle f:G\rightarrow G} 使得

自同构总是映射单位元到自身。共轭类在自同构下的像总是共轭类(同一个或另一个)。一个元素的像有同这个元素相同的阶。

两个自同构的复合也是自同构,并且群 G 的所有自同构的集合在复合运算下自身形成了一个群,即 G 的自同构群,指示为 Aut(G)。

对于所有阿贝尔群,至少有把群的元素替换为它的逆元的自同构。但是,在所有元素都等于它的逆元的群中这是一个平凡自同构,比如在克莱因四元群中。对于这种群三个非单位元的所有排列都是自同构,所以这个自同构群同构于 S3 和 Dih3

在对于素数 p 的 Zp 中,一个非单位元元素可以被替换为另一个,带有在其他元素中的相应变更。这个自同构群同构于 Zp − 1。例如,对于 n = 7,Z7 的所有元素乘以 3 再模以 7,是在这个自同构群中的一个 6 阶自同构,因为 36 = 1 ( modulo 7 ),而更低的幂不得出 1。因为这个自同构生成了 Z6。这里还有一个自同构有这个性质: Z7 的所有元素乘以 5 再模以 7。因此这两个对应于 Z6 的元素 1 和 5,以这个次序或反过来。

Z6 的自同构群同构于 Z2,因为只有两个元素 1 和 5 的每一个能生成 Z6,所以除了单位元之外我们只能互换它们。

Z2 × Z2 × Z2 = Dih2 × Z2 的自同构群有阶 168,这可以如下这样找到。所有 23 - 1 = 7 个非单位元元素扮演相同的角色,所以我们可以选择让谁扮演 (1,0,0) 的角色。余下的 23 - 21 = 6 中的任何一个都可以被选择来扮演 (0,1,0) 的角色。这确定了谁对应于 (1,1,0)。对 (0,0,1) 我们可以有 23 - 22 = 4 个选择,这就确定了余下的。因此我们有了 7 × 6 × 4 = 168 个自同构。它们对应于Fano平面的成员,它的 7 个点对应于 7 个非单位元元素。连接三个点的线对应于群运算: a, b 和 c 在一条线上意味 a+b=c, a+c=b 和 b+c=a。参见在有限域上的一般线性群。

对于阿贝尔群除了平凡的之外的所有自同构叫做外自同构。

非阿贝尔群有非平凡的内自同构群,并可能也有外自同构。

相关

  • 肺sub金/sub肺为五脏之一;根据经络、脏象学说,肺的功能是:
  • 种群瓶颈种群瓶颈效应或人口瓶颈(population bottleneck;genetic bottleneck)是指某个种群的数量由于突然的灾难所造成的死亡或不能生育造成减少50%以上或者数量级减少的事件。种群瓶颈
  • 斐洛斐洛‧尤迪厄斯(Philo Judeaus)亦称亚历山大里亚的斐洛(约公元前25年~40年或45年),是生于亚历山大城的犹太哲学家和政治家。斐洛第一个尝试将宗教信仰与哲学理性相结合,故在哲
  • 刘侠刘侠(1942年4月12日-2003年2月8日),已故中华民国作家,北投国小毕业。据其自述,因家乡在陕西省扶风县杏林镇(今属陕西省宝鸡市),也为了纪念自己一辈子与医院结下的“不解之缘”(因为杏
  • 京东商城京东商城(NASDAQ:JD)是中国大陆一家主要为B2C模式的购物网站,前称360buy,由刘强东创办。2014年,京东集团在美国纳斯达克证券交易所上市。京东商城在2004年由创始人、现任首席执行
  • 喂母奶母乳哺育(Breastfeeding),亦称哺乳、授乳或母乳喂养,指的是女性以乳房喂食婴儿母乳的行为。婴儿有吮吸反射,因此可以吮吸乳房并吞咽母乳,专家建议在出生后一小时即可哺喂母乳,之后
  • 落叶林落叶植物,是植物学中一个常见名词,与常绿植物相对,在一年中有一段时间叶片将完全脱落,枝干将变得光秃秃的没有叶子。落叶性出现的原因如季节及气候有明显关系。由于在秋冬季节温
  • 姜杰 (科学家)姜杰(1961年-),汉族,女,黑龙江哈尔滨人,毕业于国防科学技术大学,中华人民共和国科学家、第十一届全国政协委员。2015年12月当选中国科学院院士。担任中国航天科技集团公司科技委常委
  • 阿瑟·范登堡阿瑟·范登堡(英语:Arthur Hendrick Vandenberg ,1884年3月22日-1951年4月18日)是一名美国共和党籍的参议员,来自美国密歇根州,曾参与联合国的建立。范登堡曾在中国第二次国共内战
  • 鲁门·拉德夫鲁门·乔治耶夫·拉德夫(保加利亚语:Румен Георгиев Радев;1963年6月18日-),是一名保加利亚军人及政治人物,曾出任保加利亚空军司令。2016年保加利亚总统选举(英