量纲

✍ dations ◷ 2025-11-20 04:52:10 #量纲
量纲,又叫作因次(Fundamental unit),是表示一个物理量由基本量组成的情况。确定若干个基本量后,每个导出量都可以表示为基本量的幂的乘积的形式。引入量纲这一概念可以进行量纲分析,这既是物理学的基础,又有着很多重要应用。物理学中,不同的物理量有着不同的单位,然而这些单位之间都有相互的联系。实际上,恰当地规定一些基本的单位(称为基本单位),可以使任何其他的单位(称为导出单位)都表达为这些单位的乘积,将其统一以便于研究各个物理量之间的关系。如在国际单位制中,功的单位焦耳( J {displaystyle mathrm {J} } ),可以表示为“千克平方米每平方秒”( k g ⋅ m 2 / s 2 {displaystyle mathrm {kgcdot m^{2}/s^{2}} } )。然而,仅仅用单位来表示会面临一些问题:因此量纲被作为表达导出单位组成的专有方式引入物理学中。将一个物理导出量用若干个基本量的幂之积表示出来的表达式,称为该物理量的量纲乘积式或量纲式,亦简称量纲。规定七个基本物理量,在量纲中分别用七个字母表示它们的量纲,他们是:长度( L {displaystyle mathrm {L} } ),质量( M {displaystyle mathrm {M} } ),温度( Θ {displaystyle mathrm {Theta } } ),电流( I {displaystyle mathrm {I} } ),时间( T {displaystyle mathrm {T} } ),物质的量( N {displaystyle mathrm {N} } ),发光强度( J {displaystyle mathrm {J} } )。则对于任意一个物理量 A {displaystyle A} ,都可以写出下列量纲式:等号左边也可以表示为 [ A ] {displaystyle left} 。上式右边称为物理量 A {displaystyle A} 的量纲。其中, α β γ δ ϵ ζ η {displaystyle alpha ,beta ,gamma ,delta ,epsilon ,zeta ,eta } 称为量纲指数。在表示时,七个量纲不一定会全部用上。量纲指数为1的可以省略指数,指数为0的可以省略对应量纲;然而,当所有量纲指数皆为0时(称为无量纲),要将量纲记为“1”。值得注意的是,虽然物理量的量纲与取什么单位无关,但量纲却只有在一定的单位制下才有意义。量纲分析(Dimensional Analysis),又叫量纲分析,是20世纪初提出的在物理领域中建立数学模型的一种方法。量纲分析就是在量纲法则的原则下,分析和探求物理量之间关系。量纲分析的基础是量纲法则。而在深层次运用中,几乎都还会运用到白金汉π定理,以至于有时候把量纲分析直接看作了“运用Π定理进行无量纲化的过程”。对于不同物理量之间乘、除法导出新的物理量,量纲的计算满足数学上的指数计算法则,即:相乘则对应指数相加,相除则对应指数相减。例如,根据安培力计算公式 F = I L B {displaystyle F=ILB} ,可导出磁感应强度的量纲,有量纲服从的规律称为量纲法则,它有广泛的应用,一般只指出常用的两条: 1.只有量纲相同的物理量,才能彼此相加、相减和相等; 2.指数函数、对数函数和三角函数的宗量应当是量纲1的。 量纲法则是量纲分析的基础。若推出的公式不符合量纲法则,该式必然是错误的。π定理是由白金汉(E.Buckinghan)于1915年提出的一个定理,故又叫作白金汉定理。其内容为:设影响某现象的物理量数为 n {displaystyle n} 个,这些物理量的基本量纲为 m {displaystyle m} 个,则该物理现象可用 N = n − m {displaystyle N=n-m} 个独立的无量纲数群(准数)关系式表示。用数学方式表示为:设n个物理量之间满足函数关系式:其中, X 1 , X 2 , ⋯ , X n {displaystyle X_{1},X_{2},cdots ,X_{n}} 为物理量。共包含有m个基本量纲(m<n)。则上述关系式与下列关系式等价:其中 k = n − m {displaystyle k=n-m} , Π 1 , Π 2 , ⋯ , Π k {displaystyle Pi _{1},Pi _{2},cdots ,Pi _{k}} 为无量纲量,F为未知函数关系。设在水平面上有一质量为 m {displaystyle m} 的物体,受一水平力 F {displaystyle F} 的作用加速滑动,加速度为 a {displaystyle a} ,物体与水平面之间的滑动摩擦因数为 μ {displaystyle mu } ,重力加速度大小为 g {displaystyle g} 。则根据牛顿第二运动定律,可以写出以下关系式:式中有5个物理量,涉及到3个量纲( L {displaystyle mathrm {L} } , M {displaystyle mathrm {M} } , T {displaystyle mathrm {T} } ),根据Π定理,这个方程可以由两个无量纲量表示。比如:式中 F m a {displaystyle {dfrac {F}{ma}}} 与 μ m g m a {displaystyle {dfrac {mu mg}{ma}}} 皆为无量纲量,1为常数不加考虑。于是,原来有五个未知量的式子就被转化为只有两个未知量的了。实际应用当然会比这个复杂得多,然而原理是一样的。π定理是量纲分析中一个非常重要的定理,它与量纲法则是量纲分析的两大方法,它在建立模型和简化物理过程方面有着巨大的用途。量纲分析是物理学的基础之一,更在空气动力学和流体力学中有重要应用。如,在推导牛顿与达因之间的换算关系时,已知 dim ⁡ F = L M T − 2 {displaystyle dim F=mathrm {LMT^{-2}} } ,又知道牛顿使用国际单位制(千克米秒制),达因使用厘米克秒制,1m=100cm,1kg=1000g,于是比如,对于安培力公式 F = I L B {displaystyle F=ILB} ,如果不慎记成 F = I v B {displaystyle F=IvB} ,那么在验证时有,显然是不等的,那么便可以得知公式错误;并且还可以知道是少了一个量纲 T {displaystyle mathrm {T} } ,那么便会更有方向性地寻找错误原因。比如,对于单摆的周期,可以猜测它与单摆的质量 m {displaystyle m} 、摆长 l {displaystyle l} 和重力加速度 g {displaystyle g} ,于是假设其中 λ {displaystyle lambda } 为常数。两边取量纲,得根据量纲的一致性,解得x=0,y=0.5,z=-0.5,故只需用实验测出 λ {displaystyle lambda } 的值就可以了。流体力学中诸如湍流、流体阻力之类的问题,理论非常复杂,有时也常采用实验的方式确定。已经看到,在量纲法则上建立的Π定理把n元关系式简化为n-m元关系式,于是在实际计算中只需要这n-m个值便可了解该物理过程了。力学涉及三个量纲( L {displaystyle mathrm {L} } , M {displaystyle mathrm {M} } , T {displaystyle mathrm {T} } ),因此通过无量纲化便减少了3个未知量,这实际上大大地简化了实验过程和理论计算。

相关

  • 最高法院议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
  • 安瑟莫安瑟莫(Anselm,1033年-1109年4月21日),又译安瑟伦,天主教译为安色莫,意大利中世纪哲学家、神学家,1093年至1109年任坎特伯雷大主教。被尊称为最后一位教父与第一位经院哲学学者。运
  • 科依桑语系科依桑语系,或称科伊桑语系,是非洲东部坦桑尼亚的桑达韦人(Sandawe)和哈扎人(Hadza),以及非洲南部,喀拉哈里沙漠的科伊科伊人和布须曼人(或称桑人)所使用语言所属的语系,包括非洲东部的
  • 灰白质灰质(英语:Gray matter),又称为皮质(英语:Cortex),是一种神经组织,是中枢神经系统的重要组成部分。灰质由神经元,神经胶质细胞,微血管组成。灰质的灰色源于神经元的细胞体和微血管。中
  • 生态农业生态农业,是将符合生态运作的方式运用在农业生产系统里面的一种研究。生态农业英文是“Agroecology”, agro- 这个字首代表的就是农业。使用生态学的原则来处理农业生态系统(ag
  • 疽是中国医学对皮下疮肿的一个统称,特点是肿胀坚硬,但肤色不变,多发于项后及背。《灵枢·痈疽》指“热气淳盛,下陷肌肤,筋髓枯,内连五脏,血气竭,当其痈下,筋骨良肉皆无余,故命曰疽。疽
  • 箭毒箭毒(Curare,/kjuːˈrɑːriː/),一种生物碱类骨骼肌松弛药。来源于植物,现代医学中用作全身麻醉的辅助用药,常与环丙烷合用,尤其常用于腹部手术。属于神经肌肉阻断药,注射后在神经
  • 前卫先锋派(法语:avant-garde,已被英语吸收,对应英文意为front guard、advance guard或vanguard,直译为“前卫”)常指涉新颖的或实验性的作品或人物,尤其是对于艺术、文化及政治的层面
  • 打印机打印机是电脑输出设备的一种,可以将电脑内储存的资料按照文字或影像的方式永久的输出到纸张、透明胶片或其他平面媒介上。单色打印机只能包含一种颜色的图片,通常是黑色,有些单
  • 沈元壤沈元壤(1935年3月-),美籍华裔物理学家,上海人,伯克利加州大学荣休教授,复旦大学特聘教授。以其在非线性光学领域的研究而知名。沈元壤出生于上海,1952年毕业于上海市南洋模范中学。