拓扑群

✍ dations ◷ 2025-07-27 18:25:56 #拓扑群

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,拓扑群是群 和与之一起的 上的拓扑,使得这个群的二元运算和这个群的取逆函数是连续的。拓扑群允许依据连续群作用来研究连续对称的概念。

拓扑群 是拓扑空间和群使得群运算

是连续函数。这里的 × 被看作使用乘积拓扑得到拓扑空间。

尽管我们这里没有做其他要求,很多作者要求在 上的拓扑是豪斯多夫空间。下面会讨论其理由和一些等价条件。最后,这不是个严重的限制 — 很多拓扑群都可以用规范方式变成豪斯多夫空间。

使用范畴论的语言,拓扑群可以简明的定义为在拓扑空间范畴内的群对象,如同普通的群是集合范畴的群对象一样。

在两个拓扑群 和 之间的同态就是连续群同态 → 。拓扑群的同构则要求同时是群同构及对应拓扑空间的同胚。这比单纯要求连续群同构要更强,因其逆函数必须也是连续。有作为普通群是同构的但作为拓扑群却不同构的例子。实际上,任何非离散的拓扑群在用离散拓扑来考虑的时候也是(另一个)拓扑群。底层的群是一样的(同构),但两个拓扑群并非同构。

拓扑群和它们的同态一起形成一个范畴。

每个群可以平凡地变成一个拓扑群,这是通过给它一个离散拓扑达成地;这样的群称为离散群。在这个意义下,拓扑群的理论包含了普通群的理论。

实数 R,以及加法操作和它的普通拓扑构成一个拓扑群。更一般的,欧几里得空间R连同加法和标准的拓扑构成拓扑群。更一般的,所有拓扑向量空间(譬如巴拿赫空间和希尔伯特空间)的加法群是拓扑群。

上面的例子都是阿贝尔群的例子。非交换群的例子有各种李群(是拓扑群也是流形)。例如,一般线性群GL(,R)由所有可逆×实系数矩阵组成,可以视为拓扑群,其拓扑定义为将GL(,R)作为欧几里得空间R×的子空间得到的子空间拓扑。所有李群是局部紧的。

不是李群的拓扑群的一个例子是有理数Q其拓扑从实数继承。这是一个可数空间而它不是离散拓扑。对于一个非交换的例子,可以考虑R3的旋转群由绕不同轴作2π的无理数倍的两个旋转所生成的子群。

在每个带乘法单位元的巴拿赫代数中,可逆元素的集合构成一个乘法下的拓扑群。

拓扑群的代数和拓扑结构以非平凡的方式互相影响。例如,在任何拓扑群中单位分支(也就是包含单位的连通分支)是一个闭正规子群。

拓扑群上的逆运算给出了一个从G到其自身的同胚。同样,若a是G的任意元素,则a的左乘和右乘产生 → 的一个同胚。

每个拓扑群可以两种方式视为一个一致空间;“左一致性”将所有左乘变成一个一致连续映射,而“右一致性”将所有右乘变为一致连续映射。若非交换,则这两个一致性并不相同。这个一致性结构使得在拓扑群上讨论完备性、一致连续、和一致收敛成为可能。

作为一个一致空间,每个拓扑群是一个完全正则空间。因而,若一个拓扑群是T0(也就是柯尔莫果洛夫空间),则它也是T2 (也即豪斯多夫空间)。

两个拓扑群之间的最自然的同态概念是一个连续的群同态。拓扑群,和作为态射的连续群同态一起,构成一个范畴。

每个拓扑群的子群本身也是一个拓扑群,只要取子空间拓扑便可。若是G的一个子群,所有左或右陪集/是一个拓扑空间,只要取商拓扑便可(/上使得自然投影 : → /连续的最细拓扑)。可以证明商映射 : → /总是开映射。

若是一个G的正规子群,则因子群,/成为一个拓扑群,而从普通群理论来的同构基本定理在这个范围中也是成立的。但是,若不是G的拓扑下的闭集,则/不是T0的,即使是。因此很自然可以要求限制到只考虑T0拓扑群的范畴,并且限制定义中的正规到正规且闭。

若是G的子群,则H的闭包也是一个子群。同样,若H是一个正规子群,则H的闭包也是正规的。

对于调和分析有特殊重要性的是局部紧拓扑群,因为它们承认一个自然的测度和积分的概念,由哈尔测度给出。在很多方面,局部紧拓扑群是可数群的一个推广,而紧拓扑群可以视为有限群的一个推广。群表示理论对于有限群和紧拓扑群几乎是完全一样的。

相关

  • 嗜冷生物嗜冷生物是嗜极生物的一种,能够在低温的环境保持生长和繁殖的能力。与之对比的是通常生活在高温环境的嗜热生物。嗜冷细菌在地球上分布很广,因为地球表层很大一片区域的温度都
  • 贾拉拉巴德贾拉拉巴德可以指:
  • 润滑剂润滑剂是介入两运动物体表面,从而减少摩擦力以及磨损,达到提高效率的物质,通常为液体。最常见的工业用的机油用于保护机械内部的运动部件,另外也存在着人体润滑剂(医用)。润滑剂可
  • 圣经译本圣经译本,是天主教、基督教和东正教等基督教派的宗教经典《圣经》的翻译文本。《圣经》原文在以古代希伯来语、亚兰语和通用希腊语写成,圣经全书或圣经某部分已被不同圣经学者
  • 消融区一般而言,以最热月月均温0°C的等温线为界,分为堆积区和消融区。以最热月月均温0°C的等温线为界,上游地势较高,温度较低,冰雪终年堆积,属于冰河的堆积区;下游地势较低,温度较高,一旦
  • 细鲫属细鲫属(学名:)是鲤科下的一个属,本属目前有十个物种,皆分布于东亚。细鲫属的模式种是中华细鲫()。细鲫属目前已知的物种包括:
  • 自由和团结党自由和团结党(土耳其语:Özgürlük ve Dayanışma Partisi,缩写为ÖDP)是土耳其的一个左翼政党。该党成立于1996年,由几个左翼团体合并而成。该党的意识形态是自由意志社会主义
  • 拉塞尔·施威卡特拉塞尔·路易斯·“拉斯蒂”·施威卡特(Russell Louis "Rusty" Schweickart,1935年10月25日-)曾是一位美国国家航空航天局的宇航员,执行过阿波罗9号任务。
  • 哲学家小径 (海德堡)哲学家小径(德语:Philosophenweg)是德国城市海德堡Neuenheim区的一条道路,长约两公里,部分路段非常陡峭。哲学家小径是俯瞰内卡河对岸的海德堡老城风光的绝佳地点。哲学家小径的
  • 吴岩 (乾隆进士)吴岩,字怀峰、号桐邨,浙江省湖州府乌程县(今浙江省湖州市)人,清朝政治人物。进士出身。乾隆二十二年,登进士。乾隆三十年,授刑部主事,后改贵州乡试副考官。乾隆三十二年,任刑部员外郎