abc猜想

✍ dations ◷ 2025-06-08 16:55:12 #数论,猜想

abc猜想(英语: conjecture)是一个未解决的数学猜想,最先由约瑟夫·奥斯特莱及大卫·马瑟在1985年提出。abc猜想以三个互质正整数a, b, c描述,c是a及b的和,猜想因此得名。京都大学数理解析研究所望月新一教授于2012年提出论文证明,经过8年同行审查后于2020年4月发表,但对于该证明的正确性仍存在极大争议。对此也衍生出一BOINC项目“ABC@Home”。

abc猜想若得证,数论中很多著名猜想可以立时得出。多利安·哥德费尔德称abc猜想为“丢番图分析中最重要的未解问题”。(Goldfeld 1996)

对正整数, rad ( n ) {\displaystyle \operatorname {rad} (n)} 的根基(radical)。例如

若正整数, , 彼此互质,且 + =,“通常”会有 < rad(),例如:

但是也有反例,例如:

如上有多于一个整数可被小的质数的高次幂整除,使rad() < ,是较特殊的情况。ABC@Home计划目的在寻找更多这样的例子。

abc猜想(一)

abc猜想也有以下等价的表述方式:

abc猜想(二)

abc猜想第三个表述方式,用到了三元组(, , )的品质(quality),定义为:

例如:

一般的互质正整数的三元组,通常有 rad() > ,因此(, , ) < 1。大于1的情况较少出现。

abc猜想(三)

abc猜想中的ε不能去掉,不然命题就不成立。考虑以下例子:

这三个正整数互质,且有 a n + b n = c n {\displaystyle a_{n}+b_{n}=c_{n}} 趋向无限大时, 2 n + 1 3 {\displaystyle {\frac {2^{n+1}}{3}}} ,使得 < rad()对所有适合条件的三元组都成立。

如果abc猜想得证,那么有很多结果可以推导出来。其中一些结果,在abc猜想提出后,已经以其他方法得到证明,一些则仍然为猜想。

abc猜想导出有的根基的接近线性函数的上界;不过,现在已知的是指数上界。确切结果如下:

上述的上界中,1是不依赖, , 的常数,而23是(以可有效计算的方式)依赖于ε的常数,但不依赖于, , 。上述的上界对 > 2的三元组都成立。

2006年,荷兰的莱顿大学数学系与Kennislink科学研究所合作,开展ABC@Home计划。这个计划是网格计算系统,目的在找出更多的正整数三元组, , 使得rad() < 。虽然有无限个例子或反例不能解决abc猜想,但是期望借着这个计划发现的三元组的模式,可以得出对这个猜想以至于数论的新的洞见。

下述的是上节定义的品质。

截至2014年4月 (2014-04),ABC@Home找出 2380 万个三元组,现今目标在找出c不大于263的所有三元组(a,b,c)。

1996年,艾伦·贝克(Alan Baker)提出一个较为精确的猜想,将 rad ( a b c ) {\displaystyle \operatorname {rad} (abc)} ε ω rad ( a b c ) {\displaystyle \varepsilon ^{-\omega }\operatorname {rad} (abc)} 取代,在此 ω {\displaystyle \omega } a , b , c {\displaystyle a,b,c} 的不同质因数的数目。

2007年,吕西安·施皮罗尝试给出证明,后来被发现有错误。

2012年8月,日本京都大学数学家望月新一发表长约五百页的abc猜想的证明,以他建立的宇宙际泰赫米勒理论(inter-universal Teichmüller theory)为基础。该证明目前正由其他数学专家检查中。当Vesselin Dimitrov和Akshay Venkatesh在2012年10月发现一处错误时,望月新一在他的网站确认了此错误,并声称这个错误能够在近期修补,不会影响最后的结果。2012年12月,望月新一在自己主页贴出了自己对所有四篇文章的修改稿。主要包含27条重要的修改。2012年12月-2013年2月,他又屡次对文章进行了修订,新修正了18处错误,当中很多也是打字错误。望月新一在网上公开了2013年以及2014年的检验进度报告。2018年8月,皮特·舒尔策和Jakob Stix(英语:Jakob Stix)指出,望月新一的证明论文中 Corollary 3.12 证明结尾的一行推理存在无法修复的缺陷。望月认为二者的批评存在“某种根本上的误解”。

相关

  • 副作用药物不良反应(英语:adverse drug reaction,简称ADR)是患者在使用某种药物的治疗疾病的时候产生的与治疗无关的作用,而这种作用一般都对患者的治疗不利。不良反应是药物所具有的两
  • 阿耆尼阿耆尼(梵语:अग्नि,Agni),即火天,是吠陀教及印度教的火神。阿耆尼——अग्नि本身即是梵文“火焰”的名词,与拉丁语的火焰—-“ignis”是同源词(及与英文动词着火“ignite”
  • 东日本东日本,是对日本进行大地理区分使用的词语。泛指整个日本东半部地区,对应词是西日本。但在正式法令中不使用。且范围也并不明确。一些大型公司会以东日本及西日本为业务区划,例
  • 鸮形目.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 赵文瑄赵文瑄(1960年6月9日-),台湾电视剧演员,于明志工业专科学校机械科毕业。赵文瑄从明志工专机械科毕业后,先在西北航空公司做地勤,后到台湾中华航空公司做空勤人员,人称“空中少爷”,一
  • 剑桥大学学院列表剑桥大学学院列表列举了剑桥大学目前所有的成员学院(Colleges,又译“书院”)。这些成员学院是剑桥大学本科生和研究生住宿的地方,他们同时也负责安排自己的本科生录取,亦会为大学
  • 扎克·埃波扎克·埃波(英语:Zach Apple,1997年4月23日-)是美国的一位游泳运动员,主要擅长自由泳。埃波出生在俄亥俄州。他代表美国参加了2017年世界游泳锦标赛,并且在男子4×100米自由泳接力
  • 马尔科·格鲁伊奇马尔科·格鲁伊奇(塞尔维亚语:Марко Грујић;1996年4月13日-)是一位塞尔维亚足球运动员。在场上的位置是中场。现时被英超球队利物浦外借至德甲哈化柏林。他也代表塞
  • 孙力孙力,可以是:
  • 声镊声镊是一种通过声波控制物体运动的技术。在声场中,物体在声辐射力的作用下,移动到声场的特定区域。与光镊相比,声镊可将所操纵的物体大小从微米级提高到厘米级。