婆罗摩笈多

✍ dations ◷ 2025-10-26 03:01:18 #598年出生,668年逝世,印度数学家,印度天文学家

婆罗摩笈多(梵语:ब्रह्मगुप्त,IAST: Brahmagupta,598年-668年),是一位印度数学家和天文学家,出生于印度拉贾斯坦邦宾马尔,一生可能大多数时间都在生地度过。当时上述地区属于哈尔沙帝国。婆罗摩笈多为乌贾因天文台台长,在他任职期间,书写了两部关于数学和天文学的书籍,当中包括于628年写成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。

婆罗摩笈多是第一个提出有关0的计算规则的数学家。婆罗摩笈多和当时许多的印度数学家一样,会将文字编排成椭圆形的句子,而且最后会有一个环状排列的诗。由于没有提出证明,不知其中的数学推导过程。

在《婆罗摩历算书》第十四篇的第7句及第8句提及婆罗摩笈多是在三十岁那年著作此书的,也是628年,因此可以推得婆罗摩笈多是在598年出生。婆罗摩笈多写了四本有关数学及天文学的书,分别为624年的《Cadamekela》、628年的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》、665年的《Khandakhadyaka》及672年的《Durkeamynarda》,其中最著名的是《婆罗摩历算书》。波斯历史学家比鲁尼在其著作《Tariq al-Hind》提到阿拉伯帝国阿拔斯王朝的哈里发马蒙曾派大使到印度,并将一本“算书”带到巴格达翻译为阿拉伯文,一般认为这本算书就是《婆罗摩历算书》。

《婆罗摩历算书》中有四章半讲的是纯数学,第12章讲的是演算系列和少许几何学。第18章是关于代数,婆罗摩笈多在这里引入了一个解二次丢番图方程如² + 1 = ²的方法。

婆罗摩笈多还提供了计算任何四边已知的圆内接四边形的面积的公式。海伦公式是婆罗摩笈多给出的公式的一个特殊形式(一边为零)。婆罗摩笈多公式与海伦公式之间的关系类似余弦定理扩展了勾股定理。

婆罗摩笈多在《婆罗摩历算书》第十八章给了线性方程的解:

色之间的数交换后的差除以未知数的差,就是方程的解。

当中方程 b x + c = d x + e {\displaystyle bx+c=dx+e} ﹑﹑﹑,大约面积为 ( p + r 2 ) ( q + s 2 ) {\displaystyle ({\tfrac {p+r}{2}})({\tfrac {q+s}{2}})} ,设 t = p + q + r + s 2 {\displaystyle t={\tfrac {p+q+r+s}{2}}} ,准确面积则为 ( t p ) ( t q ) ( t r ) ( t s ) . {\displaystyle {\sqrt {(t-p)(t-q)(t-r)(t-s)}}.}

虽然婆罗摩笈多并没有说四边形为圆内接四边形,但其实这是明显的。

婆罗摩笈多还提供了一个化圆为方的几何方法:

12.40:直径和半径的二次方每个乘3分别地为圆形大约的周界和面积。而准确值则为直径和半径的二次方乘开方10。

这个方法不十分精确,按照它的计算得出的圆周率为 π = 10 3.162 {\displaystyle \pi ={\sqrt {10}}\approx 3.162}

婆罗摩笈多是最早使用代数解决天文问题的人。一般认为阿拉伯人是通过《婆罗摩历算书》了解到印度天文学的。770年阿拔斯王朝第二代哈里发曼苏尔邀请乌贾因的学者赴巴格达使用《婆罗摩历算书》介绍印度代数天文学。他还请人将婆罗摩笈多的著作译成阿拉伯语。

婆罗摩笈多其它重要的天文成就在于:计算星历表、天体出生和下降的时间、合相、日食和月食的方法。婆罗摩笈多批评往世书中大地是平的或者像碗一样中空的理论。相反地他的观察认为大地和天空是圆的,不过他错误地认为大地不运动。

相关

  • 高尔吉亚高尔吉亚(希腊文:Γοργίας,约公元前487年-前376年),希腊诡辩学派学者、前苏格拉底时期的哲学家及修辞学家,原居于西西里伦蒂尼。与普罗塔哥拉同为首批诡辩学者。他最为人所
  • 行距在字体排印学,行距(Leading)指代字体连续行的基线间的距离。这个词起源于手工排版的年代,铅字之间通过插入铅块来增加垂直距离。这个术语仍然被应用于如 QuarkXPress(英语:QuarkXP
  • 太平洋板块隐没带 Alps 造山带 30→ 相对于非洲板块的移动速度(mm/Y)太平洋板块是一块海洋地壳板块,大部分位于太平洋海面下。它是法国地质学家勒皮雄1968年首次提出的六大板块之一,自提出
  • 史前狮子人雕像狮子人雕像是全世界已知的最古老雕塑品,是三万年前的史前人类用象牙制作而成的。最初被科学家们称作“狮子人” (德语:Löwenmensch, 字面意思是“狮人”),亦是世界上已知最古
  • 太阳光发电太阳光伏系统,也称为光生伏特,简称光伏(Photovoltaics;字源“photo-”光,“voltaics”伏特),是指利用光伏半导体材料的光生伏打效应而将太阳能转化为直流电能的设施。光伏设施的核
  • 嵯峨天皇嵯峨天皇(日语:嵯峨天皇/さがてんのう Saga Tennō;786年9月7日-842年7月15日),日本第52代天皇(在位809年5月18日-823年4月16日)。讳神野(日语:神野/かみの Kamino)。擅长书法、诗文,被
  • 美国独立战争 十三殖民地 (1776年之前) 美利坚 (1776年之后) 法兰西 西班牙 佛蒙特 支援:  大不列颠 大不列颠属美洲 汉诺威 盟友:德意志雇佣兵(黑森佣兵): 黑森-卡塞尔 黑森-哈瑙(英语
  • 阮仲合阮仲合(越南语:Nguyễn Trọng Hợp/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H
  • 山扁豆属山扁豆属(学名:)又名假含羞草属,是豆目豆科的一属。本属属于苏木亚科、决明族、决明亚族。过去,本属与决明属()均被归类于阿勒勃属(),中文名为“决明属”,但现已知本属是决明属的旁系群
  • 加马利亚 (肯塔基州)加马利亚(英语:Gamaliel),是美国肯塔基州的一座城市。面积约为1.6平方公里(0.6平方英里)。根据2010年美国人口普查,该市的人口为376人。