婆罗摩笈多

✍ dations ◷ 2025-08-16 05:26:26 #598年出生,668年逝世,印度数学家,印度天文学家

婆罗摩笈多(梵语:ब्रह्मगुप्त,IAST: Brahmagupta,598年-668年),是一位印度数学家和天文学家,出生于印度拉贾斯坦邦宾马尔,一生可能大多数时间都在生地度过。当时上述地区属于哈尔沙帝国。婆罗摩笈多为乌贾因天文台台长,在他任职期间,书写了两部关于数学和天文学的书籍,当中包括于628年写成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。

婆罗摩笈多是第一个提出有关0的计算规则的数学家。婆罗摩笈多和当时许多的印度数学家一样,会将文字编排成椭圆形的句子,而且最后会有一个环状排列的诗。由于没有提出证明,不知其中的数学推导过程。

在《婆罗摩历算书》第十四篇的第7句及第8句提及婆罗摩笈多是在三十岁那年著作此书的,也是628年,因此可以推得婆罗摩笈多是在598年出生。婆罗摩笈多写了四本有关数学及天文学的书,分别为624年的《Cadamekela》、628年的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》、665年的《Khandakhadyaka》及672年的《Durkeamynarda》,其中最著名的是《婆罗摩历算书》。波斯历史学家比鲁尼在其著作《Tariq al-Hind》提到阿拉伯帝国阿拔斯王朝的哈里发马蒙曾派大使到印度,并将一本“算书”带到巴格达翻译为阿拉伯文,一般认为这本算书就是《婆罗摩历算书》。

《婆罗摩历算书》中有四章半讲的是纯数学,第12章讲的是演算系列和少许几何学。第18章是关于代数,婆罗摩笈多在这里引入了一个解二次丢番图方程如² + 1 = ²的方法。

婆罗摩笈多还提供了计算任何四边已知的圆内接四边形的面积的公式。海伦公式是婆罗摩笈多给出的公式的一个特殊形式(一边为零)。婆罗摩笈多公式与海伦公式之间的关系类似余弦定理扩展了勾股定理。

婆罗摩笈多在《婆罗摩历算书》第十八章给了线性方程的解:

色之间的数交换后的差除以未知数的差,就是方程的解。

当中方程 b x + c = d x + e {\displaystyle bx+c=dx+e} ﹑﹑﹑,大约面积为 ( p + r 2 ) ( q + s 2 ) {\displaystyle ({\tfrac {p+r}{2}})({\tfrac {q+s}{2}})} ,设 t = p + q + r + s 2 {\displaystyle t={\tfrac {p+q+r+s}{2}}} ,准确面积则为 ( t p ) ( t q ) ( t r ) ( t s ) . {\displaystyle {\sqrt {(t-p)(t-q)(t-r)(t-s)}}.}

虽然婆罗摩笈多并没有说四边形为圆内接四边形,但其实这是明显的。

婆罗摩笈多还提供了一个化圆为方的几何方法:

12.40:直径和半径的二次方每个乘3分别地为圆形大约的周界和面积。而准确值则为直径和半径的二次方乘开方10。

这个方法不十分精确,按照它的计算得出的圆周率为 π = 10 3.162 {\displaystyle \pi ={\sqrt {10}}\approx 3.162}

婆罗摩笈多是最早使用代数解决天文问题的人。一般认为阿拉伯人是通过《婆罗摩历算书》了解到印度天文学的。770年阿拔斯王朝第二代哈里发曼苏尔邀请乌贾因的学者赴巴格达使用《婆罗摩历算书》介绍印度代数天文学。他还请人将婆罗摩笈多的著作译成阿拉伯语。

婆罗摩笈多其它重要的天文成就在于:计算星历表、天体出生和下降的时间、合相、日食和月食的方法。婆罗摩笈多批评往世书中大地是平的或者像碗一样中空的理论。相反地他的观察认为大地和天空是圆的,不过他错误地认为大地不运动。

相关

  • 临床试验临床试验(英语:Clinical trial)是一种根据研究方案利用已上市药物或安慰剂作为对照组的方式,对药物或其他医学治疗在受试者身上进行比较测试的过程。在临床试验中,研究者要先决定
  • 起始翻译原核翻译(Prokaryotic translation)是指原核生物细胞中信使RNA被70S核糖体翻译为蛋白质的过程。该过程可分为起始、延伸、终止与再循环四个主要步骤。原核生物的翻译起始阶段
  • abbr class=abbr title=R51/53: 对水生生物有毒,可能对水生环境造成长期的不良影响R51/53/abb警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
  • 弘治弘治(1488年至1505年)为中国明朝第九个皇帝明孝宗朱祐樘的年号,前后共十八年。弘治年间,明朝政治清明,经济持续发展,史称弘治中兴。弘治十八年五月明武宗即位沿用。出自《北齐书》
  • 强逼症强迫症(英语:Obsessive-Compulsive Disorder,缩写:OCD)又译强迫性疾患、强迫性障碍、强迫性病症强迫症疾患、强迫性神经症,亦译沉溺,是一种精神病。西方精神医学中的强迫症包含强迫
  • 第十三个殖民地成立美国乔治亚省(英语:Province of Georgia),又称乔治亚殖民地,是英属美洲南方殖民地(英语:Southern colonies)之一,此殖民地是大不列颠王国建立的十三殖民地最后一个,后来成为美国一部分
  • 闽北花猪闽北花猪是福建省北部山区的地方猪种之一。闽北花猪中心产区在三明市沙县夏茂镇、南平市顺昌县洋口镇、南平市延平区王台镇等地。目前,闽北花猪仅在顺昌县仍有饲养。闽北花猪
  • 特伦甘纳邦特伦甘纳邦(泰卢固语:తెలంగాణ),印度南部的一个邦,于2014年6月2日自安得拉邦析置,总面积114,840平方公里。2011年,总人口35,286,757。特伦甘纳邦首府位于海得拉巴市。特伦甘
  • 明日记忆《明日记忆》(日语:明日の記憶,英语:),是一部由荻原浩所写的小说。之后由堤幸彦执导、渡边谦监制改编成电影,同时渡边谦也在戏中担任男主角。此剧获得日本电影金像奖多项提名,而男主
  • 吊水楼瀑布吊水楼瀑布,又称镜泊湖瀑布,位于中国黑龙江省宁安市西南。一般幅宽40多米,落差为12米。在雨季或汛期,瀑布呈现两股或数股跌落,总幅宽达200多米。