婆罗摩笈多

✍ dations ◷ 2025-04-26 12:48:02 #598年出生,668年逝世,印度数学家,印度天文学家

婆罗摩笈多(梵语:ब्रह्मगुप्त,IAST: Brahmagupta,598年-668年),是一位印度数学家和天文学家,出生于印度拉贾斯坦邦宾马尔,一生可能大多数时间都在生地度过。当时上述地区属于哈尔沙帝国。婆罗摩笈多为乌贾因天文台台长,在他任职期间,书写了两部关于数学和天文学的书籍,当中包括于628年写成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。

婆罗摩笈多是第一个提出有关0的计算规则的数学家。婆罗摩笈多和当时许多的印度数学家一样,会将文字编排成椭圆形的句子,而且最后会有一个环状排列的诗。由于没有提出证明,不知其中的数学推导过程。

在《婆罗摩历算书》第十四篇的第7句及第8句提及婆罗摩笈多是在三十岁那年著作此书的,也是628年,因此可以推得婆罗摩笈多是在598年出生。婆罗摩笈多写了四本有关数学及天文学的书,分别为624年的《Cadamekela》、628年的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》、665年的《Khandakhadyaka》及672年的《Durkeamynarda》,其中最著名的是《婆罗摩历算书》。波斯历史学家比鲁尼在其著作《Tariq al-Hind》提到阿拉伯帝国阿拔斯王朝的哈里发马蒙曾派大使到印度,并将一本“算书”带到巴格达翻译为阿拉伯文,一般认为这本算书就是《婆罗摩历算书》。

《婆罗摩历算书》中有四章半讲的是纯数学,第12章讲的是演算系列和少许几何学。第18章是关于代数,婆罗摩笈多在这里引入了一个解二次丢番图方程如² + 1 = ²的方法。

婆罗摩笈多还提供了计算任何四边已知的圆内接四边形的面积的公式。海伦公式是婆罗摩笈多给出的公式的一个特殊形式(一边为零)。婆罗摩笈多公式与海伦公式之间的关系类似余弦定理扩展了勾股定理。

婆罗摩笈多在《婆罗摩历算书》第十八章给了线性方程的解:

色之间的数交换后的差除以未知数的差,就是方程的解。

当中方程 b x + c = d x + e {\displaystyle bx+c=dx+e} ﹑﹑﹑,大约面积为 ( p + r 2 ) ( q + s 2 ) {\displaystyle ({\tfrac {p+r}{2}})({\tfrac {q+s}{2}})} ,设 t = p + q + r + s 2 {\displaystyle t={\tfrac {p+q+r+s}{2}}} ,准确面积则为 ( t p ) ( t q ) ( t r ) ( t s ) . {\displaystyle {\sqrt {(t-p)(t-q)(t-r)(t-s)}}.}

虽然婆罗摩笈多并没有说四边形为圆内接四边形,但其实这是明显的。

婆罗摩笈多还提供了一个化圆为方的几何方法:

12.40:直径和半径的二次方每个乘3分别地为圆形大约的周界和面积。而准确值则为直径和半径的二次方乘开方10。

这个方法不十分精确,按照它的计算得出的圆周率为 π = 10 3.162 {\displaystyle \pi ={\sqrt {10}}\approx 3.162}

婆罗摩笈多是最早使用代数解决天文问题的人。一般认为阿拉伯人是通过《婆罗摩历算书》了解到印度天文学的。770年阿拔斯王朝第二代哈里发曼苏尔邀请乌贾因的学者赴巴格达使用《婆罗摩历算书》介绍印度代数天文学。他还请人将婆罗摩笈多的著作译成阿拉伯语。

婆罗摩笈多其它重要的天文成就在于:计算星历表、天体出生和下降的时间、合相、日食和月食的方法。婆罗摩笈多批评往世书中大地是平的或者像碗一样中空的理论。相反地他的观察认为大地和天空是圆的,不过他错误地认为大地不运动。

相关

  • 查理二世查理二世,可能为以下欧洲君主:
  • 羽毛球羽毛球是一项隔着球网,使用长柄网状球拍挥击平口端扎有一圈羽毛的半球状软木的运动。依据参与的人数,可以分为单打与双打。相对于性质相近的网球运动,羽毛球选手除了体能要求以
  • FRAM铁电随机存取内存(Ferroelectric RAM,缩写为FeRAM或FRAM),类似于SDRAM,是一种随机存取存储器技术。但因为它使用了一层有铁电性的材料,取代原有的介电质,使得它也拥有非挥发性内存
  • 重铬酸吡啶盐重铬酸吡啶盐(Pyridinium dichromate,PDC),分子式C5H4N·H2Cr2O7,类似PCC一样的温和氧化剂,室温下为橙黄色晶体,用来把醇有限度地氧化为醛。它由E.J.Corey发明。试剂本身呈弱酸性,所
  • 北国以色列以色列王国(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
  • 清稗类钞《清稗类钞》,笔记小说,清代掌故遗闻的汇编,晚清遗老徐珂(1869年-1928年)编撰。徐珂,原名昌,字仲可,别署中可、仲玉,浙江杭县(今余杭)人,清光绪间举人,曾任袁世凯幕僚,未几辞退。后任上海
  • 江户东京博物馆江户东京博物馆(日语:東京都江戸東京博物館/とうきょうとえどとうきょうはくぶつかん Tōkyō-to Edo Tōkyō hakubutsukan)是位于日本东京墨田区横网的一所博物馆。由两国站
  • 众议院军事委员会美国众议院军事委员会(United States House Committee on Armed Services),通常称为众议院军事委员会(House Armed Services Committee),是美国众议院的常务委员会之一。它负责对
  • 弗拉季斯拉夫·费里奇阿诺维奇·霍达谢维奇弗拉季斯拉夫·费里奇阿诺维奇·霍达谢维奇(俄语:Владисла́в Фелициа́нович Ходасе́вич,1886年5月16日-1939年6月14日),是一名俄罗斯诗人、文学
  • 伊丽莎维塔·莱维娜伊丽莎维塔(丽莎)莱维娜(英语:Elizaveta (Liza) Levina)是俄裔美国的 数学统计学家,密歇根大学统计系Vijay Nair讲席教授 。她在高维统计(协方差矩阵估计(covariance matrix estimat