状态空间是控制工程中的一个名词。状态是指在系统中可决定系统状态、最小数目变量的有序集合。而所谓状态空间则是指该系统全部可能状态的集合。简单来说,状态空间可以视为一个以状态变数为坐标轴的空间,因此系统的状态可以表示为此空间中的一个向量。
状态空间表示法即为一种将物理系统表示为一组输入、输出及状态的数学模式,而输入、输出及状态之间的关系可用许多一阶微分方程来描述。
为了使数学模式不受输入、输出及状态的个数所影响,输入、输出及状态都会以向量的形式表示,而微分方程(若是线性非时变系统,可将微分方程转变为代数方程)则会以矩阵的形式来表示。
状态空间表示法提供一种方便简捷的方法来针对多输入、多输出的系统进行分析并建立模型。一般频域的系统处理方式需限制在常系数,启始条件为0的系统。而状态空间表示法对系统的系数及启始条件没有限制。
系统的状态变数是指系统变数中,可以表示任一时间系统完整状态的最小子集合。要表示一系统需要的状态变数最小值n,通常也是该系统微分方程式的阶数。若系统是以传递函数来表示,状态变数的最小个数等于传递函数分母多项式的阶数。在电路中状态变数的个数常常就是电路中储能元件(如电容器及电感器)的个数。
一个有、及可利用传递函数的严格真分部分求得,而矩阵可利用常数部分求得。
例如以下的真分传递函数
其可控制正则型的实现如下
其输出直接受到输入的影响,原因就是因为传递函数的常数部分。
要为系统增加反馈,可以将输出乘以一矩阵,当作系统的输入:的特征值决定,也可以由的适当设定及的不稳定特征值可以由适当的调整为稳定。
有一种常见的简化法是令矩阵为零矩阵,矩阵为单位矩阵,因此方程式可以简化为以下的形式:
需进行特征值分解的矩阵缩小为为零矩阵,方程式可简化为以下的形式
以下以物体的一维移动来作为范例。考虑一物体在一平面上水平移动,物体和墙壁之间有弹簧相连接,依牛顿第二运动定律,其受力如下
其中
其状态方程式可以下式表示
其中
依可控制性测试,结果为
对所有非零的为整数。