黎曼-罗赫定理

✍ dations ◷ 2025-06-10 03:00:44 #数学定理,除子几何,代数曲线,黎曼曲面,代数几何的拓扑方法

黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。

此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。

我们从一个亏格 的连通紧黎曼曲面开始,在上面取定一点 。我们想知道极点只在 的函数。这是向量空间的一个递增序列:没有极点的函数(即常值函数),在 有单极点,在 点最多有两个极点,三个极点……这些空间都是有限维的。在 =0 我们可知维数的序列前几项为

这可由部分分式理论得出。反之,如果此序列开始为

则 必然是零(所谓黎曼球面)。

由椭圆函数理论知,=1 时此序列是

且这也刻画了 =1 情形。当 > 2 时,序列前端不是固定的;但我们可以确定此序列的后端。我们也可以看到为什么 =2 的情形是特殊的,由超椭圆曲线理论,其序列开始几项为

这些结论为何具有这种形式可以追溯到此定理的表述(罗赫的部分):两个维数之差。当其中一个可以为零,我们得到一个确定的公式,对亏格与度数(即自由度的个数)是线性的。这些例子已经可重构出如下形式

对 = 1,修正项当度数为 0 时是 1;其它情形是 0。整个定理说明修正项是函数空间的一个“补空间”的维数。

用现代记法,亏格为 的紧黎曼曲面与一个典范除子 的黎曼–罗赫定理表述为:

这对所有除子 均成立。除子是曲面上点的自由阿贝尔群中一个元素。等价地,一个除子是曲面上一些点的整系数线性组合。

我们定义一个亚纯函数 的除子为

这里 () 是所有零点与极点的集合,而 定义为

我们类似地定义一个亚纯 1-形式的除子。一个整体亚纯函数的除子叫做主除子。相差一个主除子的两个除子称为线性等价。一个整体亚纯 1-形式的除子叫做典范除子(通常记作 )。任何两个亚纯 1-形式都是线性等价的,所以典范除子在线性等价的意义下是惟一的。

符号 () 表示除子 的度数,即在 中出现的系数之和。可以证明一个整体亚纯函数的除子的度数总是 0,所以除子的度数只取决于线性等价类。

数 (D) 是首先感兴趣的量:使得 () + 的所有系数都是非负的曲面上亚纯函数 组成的向量空间的维数(在 C 上)。直觉上,我们可以将其想象为在每一点处的极点不比 中对应系数更坏的所有亚纯函数;如果在 处 的系数是负数,则我们要求 在 处至少有那个重数的零点;如果 的系数是正数, 最多有那个阶数的极点。线性等价的除子相应的向量空间通过乘以那个整体亚纯函数(这在差一个常数下是良定义的)是自然同构的。

即便我们对 一无所知,我们知道特殊性指标(index of speciality)(上文所说的修正项)

所以

这就是早先提到的黎曼不等式。

上面定理对所有紧连通黎曼曲面都成立。这个公式对一个代数闭域 上所有非奇异射影代数曲线也成立。这里 () 表示在每一点的极点不坏于 中对应系数的曲线上有理函数空间的维数(在 上)。

为了将其与我们上面的例子联系起来,我们需要 的一些信息:对 =1 我们可取 =0,而对 =0 可取 = −2 (任何 )。一般地 的度数是 2 − 2。只要 的度数至少是 2 − 1 我们可确保修正项是 0。

回到 = 2 的情形我们可知上面提到的序列是

由此知度数为 2 的不确定项是 1 或 2,当然与点的选择有关。可以证明任何亏格为 2 的曲线恰有六个点的序列是 1, 1, 2, 2, ... 而其它一般点的序列是 1, 1, 1, 2, ...。特别地,一个亏格 2 曲线是超椭圆曲线。对 >2 几乎所有点的序列以 个 1 开始,只有有限个点为其它序列(参见魏尔斯特拉斯点)。

曲线的黎曼–罗赫定理对黎曼曲面由黎曼与罗赫于1850年代证明,对代数曲线由施密特于1929年证明。它是基本的,曲线后续理论试图加细它的结论(比如布里尔–诺特理论(英语:Brill–Noether theory))。

在更高维(适当的定义除子或线丛)此定理有多个版本。它们的一般表述取决于将定理分成两部分。其一,现在称为塞尔对偶性,将 ( − ) 项解释为第一层同调群的维数,() 为零次上同调群(或截面的空间)的维数,定理左边成为一个欧拉示性数,而右边给出它的计算,正好只与黎曼曲面的拓扑有关的一个度数。

在二维代数几何中这样一个公式由意大利几何学派找到;代数曲面的黎曼-罗赫定理证明了(有各种版本,最早可能属于马克斯·诺特。这样的问题大约在1950年前解决了。

-维推广,希策布鲁赫–黎曼–罗赫定理,由弗里德里希·希策布鲁赫找到并证明,利用了代数拓扑学中的示性类;他深受小平邦彦的工作影响。大约在同一时间让-皮埃尔·塞尔给出了塞尔对偶性的一般形式,故我们冠以他的姓氏。

亚历山大·格罗滕迪克于1957年证明了一个深远的推广,现在叫做格罗滕迪克–黎曼–罗赫定理。他的工作将黎曼–罗赫重新解释为不仅是关于一个簇的定理,而是关于两个簇之间的一个态射的。证明的细节由博雷尔–塞尔于1958年发表。

最后在代数拓扑中也找到了一个一般版本。这些发展本质上在1950年至1960年完成。阿蒂亚–辛格指标定理开启了这一条推广的道路。

它导致的结论是一个凝聚层相当好计算。如果只对交错和中一项感兴趣,这是通常的情形,必需更进一步的讨论比如消灭定理(英语:vanishing theorem)。

相关

  • 空军一号空军一号(Air Force One)是任何接载着美国总统的空军飞机的航空无线电台呼号。目前美国总统最常用的是两架VC-25A飞机,尾号SAM 28000和SAM 29000。其中一架为主用机,一架是备用
  • 离子交换离子交换技术(Ion exchange)或称离子色谱法,是将两种电解质间做离子的交换,或是在电解溶液和配合物之间的交换。最常见到的例子是使用聚合物或矿物用来纯化、分离或净化纯水和其
  • 台江文化中心台江文化中心是台南市政府文化局永华文化中心管理科所辖的艺文场馆,位于台南市安南区安吉路一段上,占地约1.6公顷。本中心为全台第一个由下而上、由在地民间团体争取兴建的艺
  • 包身工《包身工》,中国现代作家夏衍所著的报告文学作品,写于1935年。《包身工》一文以报告文学的形式叙述了上海等地包身工遭遇的种种非人的待遇,以及带工老板等人对他们残忍的压榨。
  • 约瑟夫·柯金斯基约瑟夫·科辛斯基(英语:Joseph Kosinski,1974年5月3日-)是一名美国电影导演、监制和编剧。主要作品为2010年的3D科幻动作片《创:战纪》,以及2013年汤姆·克鲁斯主演的科幻动作片《
  • 库卡特帕尔莱库卡特帕尔莱(Kukatpalle),是印度安得拉邦Rangareddi县的一个城镇。总人口290591(2001年)。2007年撤销建制,辖区并入大海德拉巴市政局。该地2001年总人口290591人,其中男性152159人
  • 上地雄辅物语上地雄辅物语为日本演员上地雄辅于2008年7月30日出版的书。2009年3月14日拍成电视剧。写着上地雄辅的年幼、少年时期到现在,及跟职业棒球选手松坂大辅在横滨高校的事。写真照
  • 高丽大藏经高丽大藏经,又称八万大藏经,是13世纪高丽王朝高宗用16年时间雕刻成的世界上最重要和最全面的大藏经之一。高丽大藏经内容全面,准确无误,做工精美,为韩国第32号国宝。其保存地韩国
  • 生活秀 (电影)《生活秀》是2002年上映的中国大陆剧情片,改编自池莉同名小说《生活秀》,由霍建起执导,陶红、陶泽如、潘粤明主演。影片获2002年第6届金爵奖最佳影片.
  • 蓝军蓝军可以指: