德拜函数(Debye function)是彼得·德拜于1912年估算声子对固体的比热的德拜模型时创立的函数,定义如下
D n ( x ) = 1 − n 2 ( n + 1 ) x + n ∑ k = 1 ∞ B 2 k ( 2 k + n ) ( 2 k ) ! x 2 k , | x | < 2 π , n ≥ 1 {\displaystyle D_{n}(x)=1-{\frac {n}{2(n+1)}}x+n\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k+n)(2k)!}}x^{2k},\quad |x|<2\pi ,\ n\geq 1} 。
其中 B 2 k {\displaystyle B_{2k}} 是伯努利数。
D n ( x ) = n ∗ ( ( − 1 ) n ∗ n ! ∗ ζ ( n + 1 ) + ∑ m = 0 n ( ( − 1 ) n − m + 1 ∗ n ! ∗ x m ∗ L i n − m + 1 ( e x / m ! ) ) x n + 1 − n n + 1 {\displaystyle D_{n}(x)={\frac {n*((-1)^{n}*n!*\zeta (n+1)+\sum _{m=0}^{n}((-1)^{n-m+1}*n!*x^{m}*Li_{n-m+1}(e^{x}/m!))}{x^{n+1}}}-{\frac {n}{n+1}}}
其中 L i m ( x ) {\displaystyle Li_{m}(x)} 是m阶多重对数
For x → 0 {\displaystyle x\rightarrow 0} :
For x ≪ 1 {\displaystyle x\ll 1} : D n {\displaystyle D_{n}} : D n ( x ) ∝ ∫ 0 ∞ d t t n exp ( t ) − 1 = Γ ( n + 1 ) ζ ( n + 1 ) . {\displaystyle D_{n}(x)\propto \int _{0}^{\infty }{\rm {d}}t{\frac {t^{n}}{\exp(t)-1}}=\Gamma (n+1)\zeta (n+1).\quad }
也有将德拜函数定义为
d n ( z ) = ∫ 0 x t n e t − 1 d t {\displaystyle d_{n}(z)=\int _{0}^{x}{\frac {t^{n}}{e^{t}-1}}dt} = n ! ∗ ζ ( n + 1 ) − x n + 1 n + 1 + ∑ k = 0 n ( ( − 1 ) k + 1 ∗ ( ∏ j = 0 k − 1 ( ( n − j ) ∗ x n − k ∗ L i k + 1 ( e x p ( x ) ) ) ) ) {\displaystyle =n!*\zeta (n+1)-{\frac {x^{n+1}}{n+1}}+\sum _{k=0}^{n}((-1)^{k+1}*(\prod _{j=0}^{k-1}((n-j)*x^{n-k}*Li_{k+1}(exp(x)))))}