首页 >
统计独立性
✍ dations ◷ 2025-12-08 00:49:08 #统计独立性
在概率论里,说两个事件是独立的,直觉上是指一次实验中一事件的发生不会影响到另一事件发生的概率。例如,在一般情况下可以认为连续两次掷骰子得到的点数结果是相互独立的。类似地,两个随机变量是独立的,若其在一事件给定观测量的条件概率分布和另一事件没有被观测的概率分布是一样的。标准的定义为:这里,A ∩ B是A和B的交集,即为A和B两个事件都会发生的事件。更一般地,任意个事件都是互相独立的当且仅当对其任一有限子集A1, ..., An,会有或写作:
Pr
(
⋂
i
=
1
n
A
i
)
=
∏
i
=
1
n
Pr
(
A
i
)
.
{displaystyle Pr left(bigcap _{i=1}^{n}A_{i}right)=prod _{i=1}^{n}Pr(A_{i}).!,}这被称为独立事件的乘法规则。若两个事件A和B是独立的,则其B给之A的条件概率和A的“无条件概率”一样,即至少有两个理由可以解释为何此一叙述不可以当做独立性的定义:(1)A和B两个事件在此叙述中并不对称,及(2)当概率为0亦可包含于此叙述时,会有问题产生。若回想条件概率Pr(A | B)的定义为则上面的叙述则会等价于即为上面所给定的标准定义。注意独立性并不和它在地方话里的有相同的意思。例如,一事件独立于其自身当且仅当亦即,其概率不是零就是一。因此,当一事件或其补集几乎确定会发生,它即是独立于其本身。例如,若事件A从单位区间的连续型均匀分布上选了0.5,则A是独立于其自身的,尽管重言式地,A完全决定了A。上面所定义的是事件的独立性。在这一节中,我们将处理随机变量的独立性。若X是一实数值随机变量且a是一数字的话,则X ≤ a的事件是一个事件,所以可以有意义地说它是否会独立于其他的事件。两个随机变量X和Y是独立的当且仅当对任何数字a和b,事件(X小于或等于a的事件)和为如上面所定义的独立事件。类似地,随意数量的随机变量是明确地独立的,若对任一有限子集X1, ..., Xn和任一数字的有限子集a1, ..., an,其事件, ..., 会是如上面所定义的独立事件。其量测可以由事件来取代上面所定义的事件,其中A为任一包络集合。此一定义完全和上述其随机变量的值为实数的定义等价。且他有着可以作用于复值随机变量和在任一拓扑空间中取值之随机变量上的优点。即使任意数目中的任二个随机变量都是独立的,但它们可能仍旧会无法互相独立;这种的独立被称为两两独立。若X和Y是独立的,则其期望值E会有下列的好性质:
E = E E,
(假定都存在)且其方差(若存在)满足因为其协方差 cov(X,Y) 为零。(其逆命题不成立,即若两个随机变量的协方差为0,它们不一定独立。)此外,具有分布函数FX(x) 及 FY(y)和概率密度fX(x) 及 fY(y)的随机变量X和Y为独立的,当且仅当其相结合的随机变量(X,Y)有一共同分布或等价地,有一共同密度类似的表示式亦可以用来两个以上的随机变量上。直觉地,两个随机变量X和Y给定Z条件独立,如果:一旦知道了Z,从Y的值便不能得出任何关于X的信息。例如,相同的数量Z的两个测量X和Y不是独立的,但它们是给定Z条件独立(除非两个测量的误差是有关联的)。条件独立的正式定义是基于条件分布的想法。如果X、Y和Z是离散型随机变量,那么我们定义X和Y给定Z条件独立,如果对于所有使
P
(
Z
≤
z
)
>
0
{displaystyle mathrm {P} (Zleq z)>0}
的x、y和z,都有:另一方面,如果随机变量是连续的,且具有联合概率密度p,那么X和Y给定Z条件独立,如果对于所有使
p
Z
(
z
)
>
0
{displaystyle p_{Z}(z)>0}
的实数x、y和z,都有:如果X和Y给定Z条件独立,那么对于任何满足
P
(
Z
=
z
)
>
0
{displaystyle mathrm {P} (Z=z)>0}
的x、y和z,都有:也就是说,X给定Y和Z的条件分布,与仅仅给定Z的条件分布是相同的。对于连续的情况下的条件概率密度函数,也有一个类似的公式。独立性可以视为条件独立的一个特例,因为概率可以视为不给定任何事件的条件概率。
相关
- 一氧化氮一氧化氮是氮的化合物,化学式NO,分子量30,氮的化合价为+2,是一种无色、无味、难溶于水的有毒气体。由于一氧化氮带有自由基,这使它的化学性质非常活泼。具有顺磁性。当它与氧反应
- 细胞毒性细胞毒性(英语:Cytotoxicity)是指细胞受到释放出的有毒物质而引起的细胞毒性反应。化疗药物具有细胞毒性,一旦进入体内,能区分哪些是癌细胞和正常细胞,达到了杀癌细胞,保护正常细胞
- 瘀斑瘀斑是指直径10毫米以上的皮下出血点。当身体被硬物捶击时,皮肤下的血管会破裂,造成血液流出到相邻的皮下组织,这些积聚在皮下组织的血液会在表皮外显现成瘀斑。通常小而痛淤斑
- 红外通讯技术红外通讯技术利用红外线来传递数据,是无线通讯技术的一种。红外通讯技术不需要实体连线,简单易用且实现成本较低,因而广泛应用于小型移动设备互换数据和电器设备的控制中,例如笔
- span class=chemf style=white-space:nowrap;Csub30/sub三十烷(triacontane)是含30个碳原子的直链烷烃,化学式C30H62,外观为无色蜡状固体。其衍生物三十烷醇是一种见于多种植物,例如玫瑰的植物激素。
- 石油巨头石油巨头(英语:big oil)一般指世界上资本或企业规模巨大的石油集团公司,而最大的五至六家石油集团公司,亦被称为“石油超级巨头”(英语:supermajor或super major),包括英国石油公司、
- 蝌蚪蝌蚪,古时写作科斗,是两栖动物蛙、蟾蜍、蝾螈或蚓螈的幼体,生长在水里。在此阶段,蝌蚪透过鳃来呼吸。起初它们没有四肢,而是有一条鳍状般的尾巴,因此它们能像大多数鱼类般通过摆动
- 克格勃国家安全委员会(俄语:Комите́т госуда́рственной безопа́сности, 听 帮助·信息,俄文罗马化:Komitet gosudarstvennoy bezopasnosti),通称
- 犹子犹子是日本明治时代以前存在的一种社会风俗,即自己与别人的儿子结为父子关系。犹子与养子不同的是,犹子仅仅是一种契约关系,犹子不必更改自己原本的姓氏,类似结谊,与结谊不同的是
- 1-三十烷醇1-三十烷醇(1-Triacontanol)是一种饱和一元醇,化学式C30H62O,常见于植物叶表皮蜡,与蜂蜡。1-三十烷醇是多种植物的生长因子,比较经典的例子是玫瑰,其能显著增长玫瑰的基部分叉数。
