哈密顿力学

✍ dations ◷ 2025-12-04 17:06:45 #经典力学,哈密顿力学,动力系统,辛拓扑

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。

适合用哈密顿力学表述的动力系统称为哈密顿系统。

从拉格朗日力学开始,运动方程基于广义坐标

而相应的广义速度为

通过延伸记号的意义,可以将拉格朗日函数写作

其中带下标的变量视为所有个该类型的变量。哈密顿力学的目标是用广义动量(也称为)变量取代广义速度。这样一来,就可能处理特定的系统,例如量子力学的某些方面,否则其表述会更复杂。

对于每个广义速度,有一个对应的共轭动量,定义为:

在直角坐标系中,广义动量就是物理上的线性动量。在极坐标中,对应角速度的广义动量就是物理上的角动量。对于广义坐标的任意选取,可能不能找到共轭动量的直观解释。

在依赖于坐标的表述中不太明显的一点是:不同的广义坐标实际上无非就是同一辛流形的不同坐标表示。

哈密顿量是拉格朗日量的勒让德变换:

若定义广义坐标的变换方程和无关,可以证明等于总能量 = + .

H {\displaystyle H} 上的一个纤维丛,其纤维, ∈ 是位置空间。拉格朗日量则是上的jet丛(射流丛)上的函数;取拉格朗日量的纤维内的勒让德变换就产生了一个时间上的对偶丛的函数,其在的纤维是余切空间*,它有一个自然的辛形式,而这个函数就是哈密顿量。

任何辛流形上的光滑实值函数可以用来定义一个哈密顿系统。函数称为哈密顿量或者能量函数。该辛流形则称为相空间。哈密顿量在辛流形上导出一个特殊的向量场,称为辛向量场。

该辛向量场,称为哈密顿向量场,导出一个流形上的哈密顿流。该向量场的一个积分曲线是一个流形的变换的单参数族;该曲线的参数通常称为时间。该时间的演变由辛同胚给出。根据刘维尔定理每个辛同胚保持相空间的体积形式不变。由哈密顿流导出的辛同胚的族通常称为哈密顿系统的哈密顿力学。

哈密顿向量场也导出一个特殊的操作,泊松括号。泊松括号作用于辛流形上的函数,给了流形上的函数空间一个李代数的结构。

特别的有,给定一个函数

若已知有一个概率分布, ρ,则(因为相空间速度( p ˙ i , q ˙ i {\displaystyle {{\dot {p}}_{i}},{{\dot {q}}_{i}}} 产生一个单参数辛同胚族,而若{ , } = 0,则是守恒的,而该辛同胚是对称变换。

哈密顿向量场的可积性是未解决的问题。通常,哈密顿系统是混沌的;测度,完备性,可积性和稳定性的概念没有良好的定义。迄今为止,动力系统的研究主要是定性的,而非定量的科学。

哈密顿量的重要特例是二次型,也就是,可以如下表达的哈密顿量

其中 , q {\displaystyle \langle \cdot ,\cdot \rangle _{q}} 上的余切空间)上的余度量。该哈密顿量完全由动能项组成。

若考虑一个黎曼流形或一个伪黎曼流形,使得存在一个可逆,非退化的度量,则该余度量可以简单的由该度量的逆给出。哈密顿-雅可比方程的解就是流形上的测地线。特别的有,这个情况下的哈密顿流就是测地流。这些解的存在性和解集的完备性在测地线条目中有详细讨论。

当余度量是退化的时,它不是可逆的。在这个情况下,这不是一个黎曼流形,因为它没有一个度量。但是,哈密顿量依然存在。这个情况下,在流形的每一点余度量是退化的,因此余度量的阶小于流行的维度,因而是一个亚黎曼流形。

这种情况下的哈密顿量称为亚黎曼哈密顿量。每个这样的哈密顿量唯一的决定余度量,反过来也是一样。这意味着每个亚黎曼流形由其亚黎曼哈密顿量唯一的决定,而其逆命题也为真:每个亚黎曼流形有唯一的亚黎曼哈密顿量。亚黎曼测地线的存在性由周-腊雪夫斯基定理(英语:Chow–Rashevskii theorem)给出。

连续实值海森堡群提供了亚黎曼流形的一个例子。对于海森堡群,哈密顿量为

p z {\displaystyle p_{z}} ,2映射到非负实数。

进一步的推广由南部力学给出。

相关

  • 马里亚纳海沟马里亚纳海沟,或称马里亚纳群岛海沟,为地球目前已知最深的海沟。该海沟地处西北太平洋的海床,坐标11°21′N 142°12′E / 11.350°N 142.200°E / 11.350; 142.200,位于关岛和
  • 欧西坦尼亚奥克西塔尼大区(法语:Occitanie)是法国的一个一级行政区划单位大区,于2016年1月1日正式成立,并于同年9月28日正式命名。2014年,法国政府开始谋划行政区划改革方案,最终确定合并朗格
  • 二如亭群芳谱《二如亭群芳谱》,简称《群芳谱》,明代王象晋所辑,全书共全书30卷,40余万字。明代介绍栽培植物的著作。王象晋为万历三十二年(1604年)进士,官至浙江右布政使。1607年至1627年间,王象
  • 足跟在人体解剖学中,踵是脚的后跟。踵是由踵骨支撑的,位于腿下端的骨骼关节之下。对于脚的压力分布于五个力线,其中三个在内侧,也就是大脚趾侧,两个在外侧,也就是小脚趾侧。外侧的力线
  • 电阻率电阻率(英语:Resistivity),又称电阻系数、导电率(非电导率),是描述材料导电性能的物理量。电阻率在数值上等于单位长度、单位截面的某种物质的电阻,数值上等于长度为一米,横截面为一
  • 微量营养素缺乏病微量营养素缺乏病(英语:Micronutrient deficiency)是指植物或动物缺乏足够的一种或多种微量营养素,因而无法维持最佳健康。人类和其他动物中,此病可分为两类,包括维生素缺乏症和矿
  • 张景岳张介宾(1563年-1642年),字景岳,又字会卿,别号通一子,会稽山阴(今浙江绍兴)人,明末医学大家。张介宾祖籍四川绵竹。明朝初年,张家因军功而世袭绍兴卫指挥使,“食禄千户” ,故移居会稽城东
  • 交通拥挤税伦敦交通拥挤税(英语:London congestion charge,正式名称是伦敦交通拥挤附加费)是英国伦敦都会区政府针对汽车进入市内的额外收费,于2003年2月17日起在星期一至五、以及连续假期(
  • 2019年里奇克莱斯特地震2019年里奇克莱斯特地震是指当地时间2019年7月5日20时19分52秒(UTC时间7月6日3时19分52秒)发生于美国加利福尼亚州南部的强烈地震。该次地震震中位于加利福尼亚州里奇克莱斯特
  • 斑点鬣狗斑鬣狗(学名:Crocuta crocuta),又名斑点鬣狗、斑点土狼,是食肉目下的哺乳动物,为斑鬣狗属下唯一的现存种。它们体形中等偏大,是陆地上的肉食性动物,栖息地位于撒哈拉以南非洲。由于