哈密顿力学

✍ dations ◷ 2025-04-25 19:12:39 #经典力学,哈密顿力学,动力系统,辛拓扑

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。

适合用哈密顿力学表述的动力系统称为哈密顿系统。

从拉格朗日力学开始,运动方程基于广义坐标

而相应的广义速度为

通过延伸记号的意义,可以将拉格朗日函数写作

其中带下标的变量视为所有个该类型的变量。哈密顿力学的目标是用广义动量(也称为)变量取代广义速度。这样一来,就可能处理特定的系统,例如量子力学的某些方面,否则其表述会更复杂。

对于每个广义速度,有一个对应的共轭动量,定义为:

在直角坐标系中,广义动量就是物理上的线性动量。在极坐标中,对应角速度的广义动量就是物理上的角动量。对于广义坐标的任意选取,可能不能找到共轭动量的直观解释。

在依赖于坐标的表述中不太明显的一点是:不同的广义坐标实际上无非就是同一辛流形的不同坐标表示。

哈密顿量是拉格朗日量的勒让德变换:

若定义广义坐标的变换方程和无关,可以证明等于总能量 = + .

H {\displaystyle H} 上的一个纤维丛,其纤维, ∈ 是位置空间。拉格朗日量则是上的jet丛(射流丛)上的函数;取拉格朗日量的纤维内的勒让德变换就产生了一个时间上的对偶丛的函数,其在的纤维是余切空间*,它有一个自然的辛形式,而这个函数就是哈密顿量。

任何辛流形上的光滑实值函数可以用来定义一个哈密顿系统。函数称为哈密顿量或者能量函数。该辛流形则称为相空间。哈密顿量在辛流形上导出一个特殊的向量场,称为辛向量场。

该辛向量场,称为哈密顿向量场,导出一个流形上的哈密顿流。该向量场的一个积分曲线是一个流形的变换的单参数族;该曲线的参数通常称为时间。该时间的演变由辛同胚给出。根据刘维尔定理每个辛同胚保持相空间的体积形式不变。由哈密顿流导出的辛同胚的族通常称为哈密顿系统的哈密顿力学。

哈密顿向量场也导出一个特殊的操作,泊松括号。泊松括号作用于辛流形上的函数,给了流形上的函数空间一个李代数的结构。

特别的有,给定一个函数

若已知有一个概率分布, ρ,则(因为相空间速度( p ˙ i , q ˙ i {\displaystyle {{\dot {p}}_{i}},{{\dot {q}}_{i}}} 产生一个单参数辛同胚族,而若{ , } = 0,则是守恒的,而该辛同胚是对称变换。

哈密顿向量场的可积性是未解决的问题。通常,哈密顿系统是混沌的;测度,完备性,可积性和稳定性的概念没有良好的定义。迄今为止,动力系统的研究主要是定性的,而非定量的科学。

哈密顿量的重要特例是二次型,也就是,可以如下表达的哈密顿量

其中 , q {\displaystyle \langle \cdot ,\cdot \rangle _{q}} 上的余切空间)上的余度量。该哈密顿量完全由动能项组成。

若考虑一个黎曼流形或一个伪黎曼流形,使得存在一个可逆,非退化的度量,则该余度量可以简单的由该度量的逆给出。哈密顿-雅可比方程的解就是流形上的测地线。特别的有,这个情况下的哈密顿流就是测地流。这些解的存在性和解集的完备性在测地线条目中有详细讨论。

当余度量是退化的时,它不是可逆的。在这个情况下,这不是一个黎曼流形,因为它没有一个度量。但是,哈密顿量依然存在。这个情况下,在流形的每一点余度量是退化的,因此余度量的阶小于流行的维度,因而是一个亚黎曼流形。

这种情况下的哈密顿量称为亚黎曼哈密顿量。每个这样的哈密顿量唯一的决定余度量,反过来也是一样。这意味着每个亚黎曼流形由其亚黎曼哈密顿量唯一的决定,而其逆命题也为真:每个亚黎曼流形有唯一的亚黎曼哈密顿量。亚黎曼测地线的存在性由周-腊雪夫斯基定理(英语:Chow–Rashevskii theorem)给出。

连续实值海森堡群提供了亚黎曼流形的一个例子。对于海森堡群,哈密顿量为

p z {\displaystyle p_{z}} ,2映射到非负实数。

进一步的推广由南部力学给出。

相关

  • 人乳头状瘤病毒人类乳头瘤病毒(Human Papillomavirus,HPV)是一种DNA病毒,属于乳头瘤病毒科乳头瘤病毒属。该类病毒感染人体的表皮与黏膜组织,目前约有170种类型的HPV被判别出来,有些时候HPV入侵
  • 器质性病变疾病是生物在一定原因的损害性作用下,因自稳调节紊乱而发生的异常生命活动过程,是特定的异常病理情形,而且会影响生物体的部分或是所有器官。一般会解释为“身体病况”(medical
  • 河豚河鲀(英语:Puffer fish)常作河豚,古名肺鱼,俗称气鼓鱼、气泡鱼、吹肚鱼、鸡泡鱼、青郎君、刺䲅等,一般泛指鲀形目中二齿鲀科、三齿鲀科、四齿鲀科以及箱鲀科所属的鱼类。河鲀普遍
  • 人类智力智力或智能(英语:Intelligence)是指生物一般性的精神能力。这个能力包括以下几点:推理、理解、计划、解决问题、抽象思维、表达意念以及语言和学习的能力。尽管智力的定义与重要
  • Hsub2/subSOsub2/sub次硫酸(H2SO2)是一种极不稳定的无机酸,目前只制得了次硫酸盐。金属锌与硫酰氯在乙醚中反应可制得次硫酸锌:乙酸钴与连二亚硫酸钠溶液作用,再加入过量的氨,然后通二氧化碳至饱和,可
  • X射线荧光光谱仪X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料
  • 生活满意度生活满意度指数(Satisfaction with Life Index,SWL)是由英国莱斯特大学社会心理学家阿德里安·怀特(英语:Adrian White)建立。生活满意度指数是基于多个数据,包括新经济基金会的快
  • 基本关系热力学基本关系可将一热平衡封闭系统中的内能无穷小变化,表示为以下熵及体积的无穷小变化:其中热力学第一定律可用下式来表示:根据热力学第二定律,可知下式在可逆过程中成立:因此
  • 神猪神猪(闽南语:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} 豬公,白
  • 柳琴戏柳琴戏,又称拉魂腔、拉呼腔、拉后腔。1953年定名为柳琴戏,因为它的主要伴奏乐器是柳琴而得名。柳琴戏曲调通俗,粗犷豪放,唱法以宏大明亮为主要特色。“拉腔”是它的主要特点,一句