首页 >
复变函数
✍ dations ◷ 2025-06-07 09:36:48 #复变函数
复分析是研究复变函数,特别是亚纯函数和复变解析函数的数学理论。研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。复变分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。复变函数,是自变量和应变量皆为复数的函数。更确切的说,复变函数的值域与定义域都是复平面的子集。在复变分析中,自变量又称为函数的“宗量”。对于复变函数,自变量和应变量可分成实部和虚部:用另一句话说,就是函数
f
(
z
)
{displaystyle f(z)}
的成分,可以理解成变量
x
{displaystyle x}
和
y
{displaystyle y}
的二元实函数。全纯函数(holomorphic function)是定义在复平面
C
{displaystyle C}
的开子集上的,在复平面
C
{displaystyle C}
中取值的,在每点上皆可微的函数。复变函数为全纯函数的充分必要条件是复变函数的实部和虚部同时满足柯西-黎曼方程:和通过上面的这个方程组也可以由全纯函数的实部或者虚部之一来求解另一个。柯西积分定理指出,如果全纯函数的封闭积分路径没有包括奇点,那么其积分值为0;如果包含奇点,则外部闭合路径正向积分的值等于包围这个奇点的内环上闭合路径的正向积分值。假设
U
{displaystyle U}
是复平面
C
{displaystyle C}
的一个开子集,
f
:
U
→
C
{displaystyle f:Urightarrow C}
是一个在闭圆盘
D
{displaystyle D}
上复可微的方程,并且闭圆盘
D
=
{
z
:
|
z
−
z
0
|
≤
r
}
{displaystyle D=left{z:leftvert z-z_{0}rightvert leq rright}}
是
U
{displaystyle U}
的子集。 设
C
{displaystyle C}
为
D
{displaystyle D}
的边界。则可以推得每个在
D
{displaystyle D}
内部的点
a
{displaystyle a}
:其中的积分为逆时针方向沿着
C
{displaystyle C}
的积分。在复变分析中,一个复平面的开子集
D
{displaystyle D}
上的亚纯函数是一个在
D
{displaystyle D}
上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。复函数的可微性有比实函数的可微性更强的性质。例如:每一个正则函数在其定义域中的每个开圆盘都可以幂级数来表示:特别地,全纯函数都是无限次可微的,性质对实可微函数而言普遍不成立。大部分初等函数(多项式、指数函数、三角函数)都是全纯函数。常用的方法有泰勒级数展开等。复变函数
f
(
z
)
{displaystyle f(z)}
的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。对于复变函数的孤立奇点,有如下三类。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在无穷个负幂项,那么这个点称为“本质奇点”。对复平面
C
{displaystyle C}
上的给定的开子集
U
{displaystyle U}
,以及
U
{displaystyle U}
中的一点
a
{displaystyle a}
,亚纯函数
f
:
U
∖
{
a
}
→
C
{displaystyle f:Usetminus left{aright}rightarrow C}
在
a
{displaystyle a}
处有本质奇点当且仅当它不是极点也不是可去奇点。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在有限个负幂项,那么这个点称为“极点”。亚纯函数的极点是一种特殊的奇点,它的表现如同
z
−
a
=
0
{displaystyle z-a=0}
时
1
(
z
−
a
)
n
{displaystyle {frac {1}{left(z-aright)^{n}}}}
的奇点。这就是说,如果当
z
{displaystyle z}
趋于
a
{displaystyle a}
时,函数
f
(
z
)
{displaystyle f(z)}
趋于无穷大,那么
f
(
z
)
{displaystyle f(z)}
在
z
=
a
{displaystyle z=a}
处便具有极点。复变函数在某孤立奇点邻域的洛朗级数展开,如果没有负幂项,那么这个点称为“可去奇点”。如果
U
{displaystyle U}
是复平面
C
{displaystyle C}
的一个开集,
a
{displaystyle a}
是
U
{displaystyle U}
中一点,
f
:
U
−
{
a
}
→
C
{displaystyle f:U-left{aright}rightarrow C}
是一个全纯函数,如果存在一个在
U
−
{
a
}
{displaystyle U-left{aright}}
与
f
{displaystyle f}
相等的全纯函数
g
:
U
→
C
{displaystyle g:Urightarrow C}
,则
a
{displaystyle a}
称为
f
{displaystyle f}
的一个可去奇点。如果这样的
g
{displaystyle g}
存在,我们说
f
{displaystyle f}
在
a
{displaystyle a}
是可全纯延拓的。在复分析中,留数是一个复数,描述亚纯函数在奇点周围的路径积分的表现。亚纯函数
f
{displaystyle f}
在孤立奇点
a
{displaystyle a}
的留数,通常记为
R
e
s
(
f
,
a
)
{displaystyle Res(f,a)}
,是使在圆盘
0
<
|
z
−
a
|
<
δ
{displaystyle 0<|z-a|<delta }
内具有解析原函数的唯一值
R
{displaystyle R}在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。假设U是复平面上的一个单连通开子集,a1、……、an是复平面上有限个点,f是定义在U {a1、……、an}的全纯函数。如果γ是一条把a1、……、an包围起来的可求长曲线,但不经过任何一个ak,并且其起点与终点重合,那么:一些难于计算的实函数的积分可以通过转化为复变函数,然后利用留数定理来进行计算。
相关
- 胸苷激酶结构 / ECOD胸苷激酶(英语:thymidine kinase)是一种磷酸转移酶(激酶):2’-脱氧胸苷激酶,三磷酸腺苷-胸苷 5’-磷酸转移酶,EC 2.7.1.21存在于大部分活体细胞中。它以两种同工酶的形式
- 蒙特利尔大学蒙特利尔大学(法语:Université de Montréal,简称UdeM)是一所以法语为教学语言的加拿大公立大学,位于加拿大魁北克省蒙特利尔市皇家山脚下。学校由13个学院以及2个著名的附属学
- 脊椎骨脊柱(拉丁语:Columna vertebralis、英语:vertebral column、backbone、spine)是脊椎动物位于背侧的支撑性中轴骨骼。人类的脊柱由23-24块脊椎骨(拉丁语:Vertebrae)和中间起缓冲作用
- 塔德乌什·赖希施泰因塔德乌什·赖希施泰因(波兰语:Tadeus Reichstein,1897年7月20日-1996年8月1日),波兰出生的瑞士化学家。由于发现肾上腺皮质激素及其结构和生理效应,他与爱德华·卡尔文·肯德尔、
- 联合国总部大楼联合国总部大楼(亦称联合国大厦)是联合国总部的所在地,位于美国纽约市曼哈顿区东侧,属于国际领土,因此只要是会员国国民持有护照就可以进入,包括与美国无邦交的联合国会员国。从联
- 曹楚南曹楚南(1930年8月15日-),江苏常熟人,腐蚀科学与电化学学家,中国科学院院士。曹楚南1948年考入同济大学化学系。1952年毕业后任职于中国科学院上海分院物理化学研究所。次年随研究
- 范德堡大学范德堡大学(英语:Vanderbilt University),曾译范德比尔特大学,创立于1873年。19世纪末的美国铁路和航运大王、“海军准将”康内留斯·范德堡尔特捐赠一百万美元建立了这所私立大
- 高台教高台教(越南语:Đạo Cao Đài/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","M
- 黑色素细胞黑素细胞(melanocyte),又叫痣细胞(nevus cell),是一种动物细胞,带有黑色素或是其他类似的色素,极大多数情况下位于皮肤表皮的基底层(英语:Stratum basale)、眼睛的葡萄膜(虹膜后面的色素
- 薄荷详见内文薄荷属(学名:Mentha),为唇形科的一属,包含25个种,其中辣薄荷(M. × piperita)及留兰香(M. spicata)为最常见的品种。最早期于欧洲地中海地区及西亚一带盛产。现时主要产地为美