首页 >
复变函数
✍ dations ◷ 2024-11-05 17:29:41 #复变函数
复分析是研究复变函数,特别是亚纯函数和复变解析函数的数学理论。研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。复变分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。复变函数,是自变量和应变量皆为复数的函数。更确切的说,复变函数的值域与定义域都是复平面的子集。在复变分析中,自变量又称为函数的“宗量”。对于复变函数,自变量和应变量可分成实部和虚部:用另一句话说,就是函数
f
(
z
)
{displaystyle f(z)}
的成分,可以理解成变量
x
{displaystyle x}
和
y
{displaystyle y}
的二元实函数。全纯函数(holomorphic function)是定义在复平面
C
{displaystyle C}
的开子集上的,在复平面
C
{displaystyle C}
中取值的,在每点上皆可微的函数。复变函数为全纯函数的充分必要条件是复变函数的实部和虚部同时满足柯西-黎曼方程:和通过上面的这个方程组也可以由全纯函数的实部或者虚部之一来求解另一个。柯西积分定理指出,如果全纯函数的封闭积分路径没有包括奇点,那么其积分值为0;如果包含奇点,则外部闭合路径正向积分的值等于包围这个奇点的内环上闭合路径的正向积分值。假设
U
{displaystyle U}
是复平面
C
{displaystyle C}
的一个开子集,
f
:
U
→
C
{displaystyle f:Urightarrow C}
是一个在闭圆盘
D
{displaystyle D}
上复可微的方程,并且闭圆盘
D
=
{
z
:
|
z
−
z
0
|
≤
r
}
{displaystyle D=left{z:leftvert z-z_{0}rightvert leq rright}}
是
U
{displaystyle U}
的子集。 设
C
{displaystyle C}
为
D
{displaystyle D}
的边界。则可以推得每个在
D
{displaystyle D}
内部的点
a
{displaystyle a}
:其中的积分为逆时针方向沿着
C
{displaystyle C}
的积分。在复变分析中,一个复平面的开子集
D
{displaystyle D}
上的亚纯函数是一个在
D
{displaystyle D}
上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。复函数的可微性有比实函数的可微性更强的性质。例如:每一个正则函数在其定义域中的每个开圆盘都可以幂级数来表示:特别地,全纯函数都是无限次可微的,性质对实可微函数而言普遍不成立。大部分初等函数(多项式、指数函数、三角函数)都是全纯函数。常用的方法有泰勒级数展开等。复变函数
f
(
z
)
{displaystyle f(z)}
的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。对于复变函数的孤立奇点,有如下三类。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在无穷个负幂项,那么这个点称为“本质奇点”。对复平面
C
{displaystyle C}
上的给定的开子集
U
{displaystyle U}
,以及
U
{displaystyle U}
中的一点
a
{displaystyle a}
,亚纯函数
f
:
U
∖
{
a
}
→
C
{displaystyle f:Usetminus left{aright}rightarrow C}
在
a
{displaystyle a}
处有本质奇点当且仅当它不是极点也不是可去奇点。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在有限个负幂项,那么这个点称为“极点”。亚纯函数的极点是一种特殊的奇点,它的表现如同
z
−
a
=
0
{displaystyle z-a=0}
时
1
(
z
−
a
)
n
{displaystyle {frac {1}{left(z-aright)^{n}}}}
的奇点。这就是说,如果当
z
{displaystyle z}
趋于
a
{displaystyle a}
时,函数
f
(
z
)
{displaystyle f(z)}
趋于无穷大,那么
f
(
z
)
{displaystyle f(z)}
在
z
=
a
{displaystyle z=a}
处便具有极点。复变函数在某孤立奇点邻域的洛朗级数展开,如果没有负幂项,那么这个点称为“可去奇点”。如果
U
{displaystyle U}
是复平面
C
{displaystyle C}
的一个开集,
a
{displaystyle a}
是
U
{displaystyle U}
中一点,
f
:
U
−
{
a
}
→
C
{displaystyle f:U-left{aright}rightarrow C}
是一个全纯函数,如果存在一个在
U
−
{
a
}
{displaystyle U-left{aright}}
与
f
{displaystyle f}
相等的全纯函数
g
:
U
→
C
{displaystyle g:Urightarrow C}
,则
a
{displaystyle a}
称为
f
{displaystyle f}
的一个可去奇点。如果这样的
g
{displaystyle g}
存在,我们说
f
{displaystyle f}
在
a
{displaystyle a}
是可全纯延拓的。在复分析中,留数是一个复数,描述亚纯函数在奇点周围的路径积分的表现。亚纯函数
f
{displaystyle f}
在孤立奇点
a
{displaystyle a}
的留数,通常记为
R
e
s
(
f
,
a
)
{displaystyle Res(f,a)}
,是使在圆盘
0
<
|
z
−
a
|
<
δ
{displaystyle 0<|z-a|<delta }
内具有解析原函数的唯一值
R
{displaystyle R}在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。假设U是复平面上的一个单连通开子集,a1、……、an是复平面上有限个点,f是定义在U {a1、……、an}的全纯函数。如果γ是一条把a1、……、an包围起来的可求长曲线,但不经过任何一个ak,并且其起点与终点重合,那么:一些难于计算的实函数的积分可以通过转化为复变函数,然后利用留数定理来进行计算。
相关
- 心像表象(心理图像),在大多数情况下,类似感知某些物体、事件、场景,不过对感官而言,感知对象实际上并不存在。 有些时候,尤其是在入眠期(英语:Hypnagogia)和半醒(半意识)(英语:Hypnopom
- 高丽参高丽参(学名:Panax ginseng)是朝鲜半岛上出产的一种人参。高丽参自古就有“一根高丽参如一串宝石”和“百草之王”的说法。高丽参含有34种人参皂苷成分远高于花旗参(13种)和三七
- 本体感觉本体感觉,又称肌肉运动知觉,是一种对肌肉各个部分的动作或者一连串动作所产生的感觉,称呼为“自我知觉”。可是对某些人来说肌肉运动知觉跟自我知觉不同在于保持平衡的触觉。例
- 食物网食物链是表示物种之间的食物组成关系,在生态学中能代表物质和能量在物种之间转移流动的情况。虽然生态系统中的生物种类众多,亦于生态系统分别扮演着不同的角色,但根据它们在能
- Hachimoji八文字DNA(英语:Hachimoji DNA,Hachimoji源自日语“八文字”的发音),是一种人工合成的核酸类似物,除含有四种天然DNA中含有的碱基腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)外,还含有另
- 维生素H生物素(Biotin)为维生素B群之一,又称维生素H、维生素B7、辅酶R(Coenzyme R)等。 生物素在肝、肾、酵母、牛乳中含量较多,是生物体固定二氧化碳的重要因素。容易同鸡蛋白中的一种蛋
- 蔷薇科蔷薇科(学名:Rosaceae)约有124属3300余种,广布于全球,以温带居多;中国约有55属1000余种。台湾有28属153种。绝大多数为木本,少数为草本;茎有明显的皮孔。单叶或复叶,一般互生,多数有托
- 阿猴坐标:22°39′N 120°29′E / 22.650°N 120.483°E / 22.650; 120.483屏东市(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe U
- 科威特城科威特城(阿拉伯语:مدينة الكويت)位于科威特东部波斯湾畔,是科威特的首都和首都省的首府。http://www.hko.gov.hk/wxinfo/climat/world/chi/asia/westasia/kuwait_c.
- 奥托·李林塔尔奥托·李林塔尔(Otto Lilienthal,1848年5月23日-1896年8月10日)是一位德国航空先驱,以“德国滑翔机之王”及绰号“蝙蝠侠”闻名于世。他也是历史上首位能够重复成功完成滑翔飞行