复变函数

✍ dations ◷ 2025-09-02 12:48:31 #复变函数
复分析是研究复变函数,特别是亚纯函数和复变解析函数的数学理论。研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。复变分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。复变函数,是自变量和应变量皆为复数的函数。更确切的说,复变函数的值域与定义域都是复平面的子集。在复变分析中,自变量又称为函数的“宗量”。对于复变函数,自变量和应变量可分成实部和虚部:用另一句话说,就是函数 f ( z ) {displaystyle f(z)} 的成分,可以理解成变量 x {displaystyle x} 和 y {displaystyle y} 的二元实函数。全纯函数(holomorphic function)是定义在复平面 C {displaystyle C} 的开子集上的,在复平面 C {displaystyle C} 中取值的,在每点上皆可微的函数。复变函数为全纯函数的充分必要条件是复变函数的实部和虚部同时满足柯西-黎曼方程:和通过上面的这个方程组也可以由全纯函数的实部或者虚部之一来求解另一个。柯西积分定理指出,如果全纯函数的封闭积分路径没有包括奇点,那么其积分值为0;如果包含奇点,则外部闭合路径正向积分的值等于包围这个奇点的内环上闭合路径的正向积分值。假设 U {displaystyle U} 是复平面 C {displaystyle C} 的一个开子集, f : U → C {displaystyle f:Urightarrow C} 是一个在闭圆盘 D {displaystyle D} 上复可微的方程,并且闭圆盘 D = { z : | z − z 0 | ≤ r } {displaystyle D=left{z:leftvert z-z_{0}rightvert leq rright}} 是 U {displaystyle U} 的子集。 设 C {displaystyle C} 为 D {displaystyle D} 的边界。则可以推得每个在 D {displaystyle D} 内部的点 a {displaystyle a} :其中的积分为逆时针方向沿着 C {displaystyle C} 的积分。在复变分析中,一个复平面的开子集 D {displaystyle D} 上的亚纯函数是一个在 D {displaystyle D} 上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。复函数的可微性有比实函数的可微性更强的性质。例如:每一个正则函数在其定义域中的每个开圆盘都可以幂级数来表示:特别地,全纯函数都是无限次可微的,性质对实可微函数而言普遍不成立。大部分初等函数(多项式、指数函数、三角函数)都是全纯函数。常用的方法有泰勒级数展开等。复变函数 f ( z ) {displaystyle f(z)} 的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。对于复变函数的孤立奇点,有如下三类。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在无穷个负幂项,那么这个点称为“本质奇点”。对复平面 C {displaystyle C} 上的给定的开子集 U {displaystyle U} ,以及 U {displaystyle U} 中的一点 a {displaystyle a} ,亚纯函数 f : U ∖ { a } → C {displaystyle f:Usetminus left{aright}rightarrow C} 在 a {displaystyle a} 处有本质奇点当且仅当它不是极点也不是可去奇点。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在有限个负幂项,那么这个点称为“极点”。亚纯函数的极点是一种特殊的奇点,它的表现如同 z − a = 0 {displaystyle z-a=0} 时 1 ( z − a ) n {displaystyle {frac {1}{left(z-aright)^{n}}}} 的奇点。这就是说,如果当 z {displaystyle z} 趋于 a {displaystyle a} 时,函数 f ( z ) {displaystyle f(z)} 趋于无穷大,那么 f ( z ) {displaystyle f(z)} 在 z = a {displaystyle z=a} 处便具有极点。复变函数在某孤立奇点邻域的洛朗级数展开,如果没有负幂项,那么这个点称为“可去奇点”。如果 U {displaystyle U} 是复平面 C {displaystyle C} 的一个开集, a {displaystyle a} 是 U {displaystyle U} 中一点, f : U − { a } → C {displaystyle f:U-left{aright}rightarrow C} 是一个全纯函数,如果存在一个在 U − { a } {displaystyle U-left{aright}} 与 f {displaystyle f} 相等的全纯函数 g : U → C {displaystyle g:Urightarrow C} ,则 a {displaystyle a} 称为 f {displaystyle f} 的一个可去奇点。如果这样的 g {displaystyle g} 存在,我们说 f {displaystyle f} 在 a {displaystyle a} 是可全纯延拓的。在复分析中,留数是一个复数,描述亚纯函数在奇点周围的路径积分的表现。亚纯函数 f {displaystyle f} 在孤立奇点 a {displaystyle a} 的留数,通常记为 R e s ( f , a ) {displaystyle Res(f,a)} ,是使在圆盘 0 < | z − a | < δ {displaystyle 0<|z-a|<delta } 内具有解析原函数的唯一值 R {displaystyle R}在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。假设U是复平面上的一个单连通开子集,a1、……、an是复平面上有限个点,f是定义在U {a1、……、an}的全纯函数。如果γ是一条把a1、……、an包围起来的可求长曲线,但不经过任何一个ak,并且其起点与终点重合,那么:一些难于计算的实函数的积分可以通过转化为复变函数,然后利用留数定理来进行计算。

相关

  • 头发头发,或称发,是指长在人类头部上的毛发。头发的颜色及其他特征是由基因决定,一般而言常见的有黑色、金黄色、棕色及红色等,当人类老化时,头发通常会变成银白色。不同民族的头发硬
  • 甲壳纲见内文甲壳亚门(学名:Crustacea)是由非常大的一组的节肢动物门形成的,通常被当作是一个亚门,包括常见的物种,例如螃蟹,虾,龙虾,淡水龙虾,磷虾,和藤壶等等。这些物种通过对非常不同的环
  • EB病毒人类疱疹病毒第四型(拉丁语:Epstein-Barr virus,缩写EBV、爱泼斯坦-巴尔病毒、 human herpesvirus 4 (HHV-4)),又称为EB病毒,是最常见能引起人类疾病的病毒之一。EBV是在公元1964
  • 奠边县奠边县(越南语:Huyện Điện Biên/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H
  • 亚德里亚堡埃迪尔内(土耳其语:Edirne),或称哈德良堡或阿德里安堡(拉丁语:Hadrianopolis),因罗马皇帝哈德良所建而得名。土耳其语埃迪尔内是希腊语阿德里安堡的音译,故两种称呼并不是两个不同的
  • 半音节文字半音节文字是一种半字母半音节的书写系统。该释义传统上衍生至元音附标文字,但本文主要讨论的是前者。注音符号是标准汉语的标音系统之一,现有37个符号(声母21个、介音3个及韵
  • 儿茶酚胺儿茶酚胺(拉丁语:Catecholamine)是具有儿茶酚核的(苯乙)胺类化合物的统称,是由肾上腺产生的一类应激拟交感“斗或逃”(Fight or Flight)激素。最重要的儿茶酚胺是肾上腺素(Epinephrin
  • 海盐海盐为食用盐的一种,通过晒干海水以获得海水中的盐分。可以用于烹调和化妆。虽然很多精盐也来自海盐,但并未表明为海盐,颗粒细小。市售海盐一般颗粒较大,价钱比一般的食盐要贵很
  • 奇科皮坐标:42°08′55″N 72°36′30″W / 42.14861°N 72.60833°W / 42.14861; -72.60833奇科皮(英语:Chicopee)是美国马萨诸塞州汉登县的一个城市,位于康涅狄格河东岸。面积61.9平
  • 数学分析数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函数等的一般理论为主要内容,并