复变函数

✍ dations ◷ 2025-08-10 21:19:34 #复变函数
复分析是研究复变函数,特别是亚纯函数和复变解析函数的数学理论。研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。复变分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。复变函数,是自变量和应变量皆为复数的函数。更确切的说,复变函数的值域与定义域都是复平面的子集。在复变分析中,自变量又称为函数的“宗量”。对于复变函数,自变量和应变量可分成实部和虚部:用另一句话说,就是函数 f ( z ) {displaystyle f(z)} 的成分,可以理解成变量 x {displaystyle x} 和 y {displaystyle y} 的二元实函数。全纯函数(holomorphic function)是定义在复平面 C {displaystyle C} 的开子集上的,在复平面 C {displaystyle C} 中取值的,在每点上皆可微的函数。复变函数为全纯函数的充分必要条件是复变函数的实部和虚部同时满足柯西-黎曼方程:和通过上面的这个方程组也可以由全纯函数的实部或者虚部之一来求解另一个。柯西积分定理指出,如果全纯函数的封闭积分路径没有包括奇点,那么其积分值为0;如果包含奇点,则外部闭合路径正向积分的值等于包围这个奇点的内环上闭合路径的正向积分值。假设 U {displaystyle U} 是复平面 C {displaystyle C} 的一个开子集, f : U → C {displaystyle f:Urightarrow C} 是一个在闭圆盘 D {displaystyle D} 上复可微的方程,并且闭圆盘 D = { z : | z − z 0 | ≤ r } {displaystyle D=left{z:leftvert z-z_{0}rightvert leq rright}} 是 U {displaystyle U} 的子集。 设 C {displaystyle C} 为 D {displaystyle D} 的边界。则可以推得每个在 D {displaystyle D} 内部的点 a {displaystyle a} :其中的积分为逆时针方向沿着 C {displaystyle C} 的积分。在复变分析中,一个复平面的开子集 D {displaystyle D} 上的亚纯函数是一个在 D {displaystyle D} 上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。复函数的可微性有比实函数的可微性更强的性质。例如:每一个正则函数在其定义域中的每个开圆盘都可以幂级数来表示:特别地,全纯函数都是无限次可微的,性质对实可微函数而言普遍不成立。大部分初等函数(多项式、指数函数、三角函数)都是全纯函数。常用的方法有泰勒级数展开等。复变函数 f ( z ) {displaystyle f(z)} 的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。对于复变函数的孤立奇点,有如下三类。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在无穷个负幂项,那么这个点称为“本质奇点”。对复平面 C {displaystyle C} 上的给定的开子集 U {displaystyle U} ,以及 U {displaystyle U} 中的一点 a {displaystyle a} ,亚纯函数 f : U ∖ { a } → C {displaystyle f:Usetminus left{aright}rightarrow C} 在 a {displaystyle a} 处有本质奇点当且仅当它不是极点也不是可去奇点。复变函数在某孤立奇点邻域的洛朗级数展开,如果存在有限个负幂项,那么这个点称为“极点”。亚纯函数的极点是一种特殊的奇点,它的表现如同 z − a = 0 {displaystyle z-a=0} 时 1 ( z − a ) n {displaystyle {frac {1}{left(z-aright)^{n}}}} 的奇点。这就是说,如果当 z {displaystyle z} 趋于 a {displaystyle a} 时,函数 f ( z ) {displaystyle f(z)} 趋于无穷大,那么 f ( z ) {displaystyle f(z)} 在 z = a {displaystyle z=a} 处便具有极点。复变函数在某孤立奇点邻域的洛朗级数展开,如果没有负幂项,那么这个点称为“可去奇点”。如果 U {displaystyle U} 是复平面 C {displaystyle C} 的一个开集, a {displaystyle a} 是 U {displaystyle U} 中一点, f : U − { a } → C {displaystyle f:U-left{aright}rightarrow C} 是一个全纯函数,如果存在一个在 U − { a } {displaystyle U-left{aright}} 与 f {displaystyle f} 相等的全纯函数 g : U → C {displaystyle g:Urightarrow C} ,则 a {displaystyle a} 称为 f {displaystyle f} 的一个可去奇点。如果这样的 g {displaystyle g} 存在,我们说 f {displaystyle f} 在 a {displaystyle a} 是可全纯延拓的。在复分析中,留数是一个复数,描述亚纯函数在奇点周围的路径积分的表现。亚纯函数 f {displaystyle f} 在孤立奇点 a {displaystyle a} 的留数,通常记为 R e s ( f , a ) {displaystyle Res(f,a)} ,是使在圆盘 0 < | z − a | < δ {displaystyle 0<|z-a|<delta } 内具有解析原函数的唯一值 R {displaystyle R}在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。假设U是复平面上的一个单连通开子集,a1、……、an是复平面上有限个点,f是定义在U {a1、……、an}的全纯函数。如果γ是一条把a1、……、an包围起来的可求长曲线,但不经过任何一个ak,并且其起点与终点重合,那么:一些难于计算的实函数的积分可以通过转化为复变函数,然后利用留数定理来进行计算。

相关

  • 贫血贫血(英语:anemia, anaemia,拉丁语:anæmia)通常定义为血液中红血球或血红素总数量下降的情形;也可以被定义为血液携带氧气能力下降的情况。当贫血慢性发作时,其症状往往不明显,可能
  • 高血压高血压(英语:Hypertension,high blood pressure)是动脉血压持续偏高的慢性疾病。高血压一般没有症状,不过长期高血压为冠状动脉疾病、中风、心脏衰竭、心房颤动、周边动脉阻塞、
  • 科尔萨科夫综合征科尔萨科夫氏症候群(Korsakoff's syndrome),又称健忘综合征,为一种大脑缺乏硫胺(维生素B1)而引起的精神障碍。其疾病由俄国神经学家谢尔盖·科尔萨科夫最先发现而命名。科尔萨科夫
  • 谷氨酸谷氨酸(英语:Glutamic acid)是α-氨基戊二酸是组成生物体内各种蛋白质的20种氨基酸之一。
  • 长春新碱长春新碱(Vincristine),商品名“维克思丁”、“安可平”(Oncovin),又名长春花新碱、新长春碱,医学上简称VCR,是一种由夹竹桃科长春花属植物长春花中提取的一种生物碱。它是一种有丝
  • arXivarXiv(X依希腊文的χ发音,读音如英语的archive)是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站,始于1991年8月14日。截至2008年10月 (2008-10),arX
  • 埃德温·萨尔皮特埃德温·欧内斯特·萨尔皮特,ForMemRS(英语:Edwin Ernest Salpeter,1924年12月3日-2008年11月26日),奥地利–澳大利亚–美国天体物理学家。
  • 弗朗西斯·培根弗朗西斯·培根(英语:Francis Bacon,1909年10月28日-1992年4月28日)是一位生于爱尔兰的英国画家,为同名英国哲学家的后代。其作品以粗犷、犀利,具强烈暴力与噩梦般的图像著称。中后
  • 辐射尘放射性落下灰,也称放射性沉降物、放射性落尘、辐射落尘或原子尘,是核弹爆炸或核反应堆泄漏后从天而降的放射性尘埃,含有大量放射性元素,是一种放射性污染。核弹爆炸产生的辐射尘
  • 白癜风白癜风(Vitiligo)也称为白斑、白蚀,是慢性的皮肤症状,特征是皮肤部分部位因为色素脱失而出现斑痕 。斑痕多半是白色的,而且有不规则的边缘 。该部位的皮肤也会变成白色 ,口鼻的内