米安-邱拉数列(Mian-Chowla sequence)是以递归方式定义的整数数列,其首项为
而对于
, 是对于所有不大于 的 和 ,以下的二项和均不重复的最小整数。
第一项为
,其二项和只有一个1 + 1 = 2,数列的下一项是 ,其二项和有2, 3, 4,都不重复。第三项 不能是3,因为若 是3,就会有重复的二项和1 + 3 = 2 + 2 = 4,可得到 ,二项和为2, 3, 4, 5, 6, 8。米安-邱拉数列的前几项是若定义
,所得的数列相近,不过每一项都比米安-邱拉数列要少1(0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, ... A025582)。此数列是由阿布杜尔·马基德·米安和萨尔瓦达曼·邱拉(英语:Sarvadaman Chowla)所发现。