弗勒内-塞雷公式

✍ dations ◷ 2025-11-28 16:12:40 #微分几何,多变量微积分,曲线,曲率,数学公式

在向量微积分中,弗勒内-塞雷公式(Frenet–Serret 公式)用来描述欧几里得空间R中的粒子在连续可微曲线上的运动。更具体的说,弗勒内公式描述了曲线的切向,法向,副法方向之间的关系。这一公式由法国数学家让·弗雷德里克·弗勒内(于1847年的博士论文中)和约瑟夫·阿尔弗雷德·塞雷(于1851年)分别提出。

单位切向量 T,单位法向量 N,单位副法向量 B,被称作 弗勒内标架,他们的具体定义如下:

弗勒内公式如下:

其中/ 是对弧长的微分, κ 为曲线的曲率,τ 为曲线的挠率。弗勒内公式描述了空间曲线曲率挠率的变化规律。

记r(t) 为欧式空间R中的曲线,表示粒子在时间 t 时刻的位置向量。 弗勒内公式只适用于正则曲线,即速度向量r′(t)和加速度向量r′′(t)不为零的曲线。

记 为 时刻粒子所在位置到曲线上某定点的弧长:

由于假设r′ ≠ 0,因此可以将 表示为 的函数,因此可将曲线表示为弧长 的函数 r(s) = r(())。 通常也被称为曲线的弧长参数。

对于由弧长参数定义的正则曲线 r(),弗勒内标架 (或弗勒内基底)定义如下:

由于 | T | = 1 , d ( T T ) d s = 2 T N = 0 , {\displaystyle |\mathbf {T} |=1,{\frac {d(\mathbf {T} \cdot \mathbf {T} )}{ds}}=2\mathbf {T} \cdot \mathbf {N} =0,} ,并且可以写做矩阵的形式:

其中的矩阵是反对称矩阵。

对弧长s求导,可以看成是对切方向的协变导数。

相关

  • DNA复制DNA复制是指DNA双链在细胞分裂分裂间期进行的以一个亲代DNA分子为模板合成子代DNA链的过程。复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来
  • 推理规则在逻辑中,特别是数理逻辑中,推理规则(推论规则)是构造有效推论的方案。这些方案建立在一组叫做前提的公式和叫做结论的断言之间的语法关系。这些语法关系用于推理过程中,新的真的
  • 安体舒通螺内酯(英语:spironolactone),商品名有安体舒通、Aldactone等,是一种常用于治疗心衰、肝硬化、胃病等引发的积液的利尿药。此药也用于治疗高血压、补充后仍无改善的低血钾,以及女
  • 公交车公交车可以表示以下一种意思:
  • 普鲁士王国官方:德语普鲁士王国(德语:Königreich Preußen,英语:Kingdom of Prussia)是一个主要位于现今德国和波兰境内的王国,存在于1701年至1918年,为从1871年至一战战败前领导德意志第二
  • 澳大利亚板块澳洲板块是南半球一个主要板块,原为冈瓦那大陆的一部分,直到大约1亿年前,因印度板块开始向北移动,澳洲板块才与印度板块、南极洲板块相连。8500万年前,澳洲板块开始与南极洲板块
  • 中天娱乐台中天娱乐台是中天电视旗下的电视频道,以播出娱乐性质的电视节目为主,并有多个节目与中视无线台联播。前身为中视卫星传播股份有限公司经营的“中视卫星”频道,与中天综合台共用
  • 法国驻外机构列表法国驻外机构列表列出法兰西共和国派驻全球各地的驻外机构,法国拥有全世界第二大的外交网络,仅次于美国。最早开始派驻海外代表的是弗朗索瓦一世,他在1522年派了一个代表团前往
  • 内田康夫内田康夫(1934年11月15日-2018年3月13日),生于日本东京府东京市滝野川区(今 东京都北区),是推理小说作家。东洋大学文学院毕业。曾担任广告文案设计员、广告公司社长,1980年以绰号“
  • 盛田幸妃盛田幸妃(日语:盛田 幸妃/もりた こうき ,1969年11月21日-2015年10月16日),日本的棒球选手,出生于北海道茅部郡鹿部町。他曾效力于日本职棒近铁野牛等,守备位置为投手,2002年退休,生涯