首页 >
挠率
✍ dations ◷ 2025-07-26 22:42:39 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数
s
{displaystyle s}
给出的空间曲线,单位切矢量为
t
{displaystyle {boldsymbol {t}}}
。如果在某一点 C 的曲率
κ
{displaystyle kappa }
不等于 0,那么主法矢量和次法矢量分别是n
=
t
′
κ
,
b
=
t
×
n
.
{displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数
s
{displaystyle s}
的导数。空间曲线在一点处的切矢量
t
{displaystyle {boldsymbol {t}}}
和主法矢量
n
{displaystyle {boldsymbol {n}}}
所张成的平面就是密切平面,密切平面的法矢量
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则
b
{displaystyle {boldsymbol {b}}}
不是常矢量。因为
b
{displaystyle {boldsymbol {b}}}
是单位矢量,所以
b
′
{displaystyle {boldsymbol {b}}'}
垂直于
b
{displaystyle {boldsymbol {b}}}
。又因为
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
,所以
b
′
=
t
′
×
n
+
t
×
n
′
=
t
×
n
′
{displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'}
,故
b
′
{displaystyle {boldsymbol {b}}'}
也垂直于
t
{displaystyle {boldsymbol {t}}}
。所以
b
′
{displaystyle {boldsymbol {b}}'}
与
n
{displaystyle {boldsymbol {n}}}
共线。挠率
τ
{displaystyle tau }
度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率
τ
(
s
)
{displaystyle tau (s)}
度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量
r
′
(
t
)
,
r
″
(
t
)
{displaystyle mathbf {r'} (t),mathbf {r''} (t)}
线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线
r
(
t
)
=
(
a
cos
t
,
a
sin
t
,
b
t
)
(
a
>
0
)
{displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)}
的曲率、挠率都是常数,分别为κ
=
a
a
2
+
b
2
,
τ
=
b
a
2
+
b
2
{displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6
相关
- 火箭核热力火箭是把工作流体,如氢在核反应堆中加热,接着从火箭发动机喷管中喷出产生推力的一种热力火箭。目前NERVA被建造出来验证核热力火箭。目前的核热力火箭使用的是核裂变技
- 2013年东南亚霾害2013年东南亚霾害为印尼苏门答腊多处的农民常以火大面积的烧芭(火耕)方式清理农地。烟雾随季风飘散,并影响新加坡、马来西亚等邻近东南亚国家环境污染灾害。霾害造成新加坡樟宜
- 电烧烧蚀(消融,Ablation)是物体表面经由汽化、切削、或其它侵蚀作用,去除表面材料或物质的过程。烧蚀材料的例子如下:包括太空船升空和返回时穿越大气层、在冰川的冰和雪、药物和被动
- 淡水湖淡水湖是指以淡水形式积存在地表上的湖泊,有封闭式和开放式两种。封闭式的淡水湖大多位于高山或相当内陆区域,没有明显的河川流入和流出。开放式的则可能相当大,湖中有岛屿,并有
- 恶报因果论(梵语:hetu-phala),在佛教中,是论述因缘业报(因hetu,缘paticca,业kamma,报vipaka或果phala)运作规律的学说,佛教认为因果法则是天然存在的,不会因为人认为不存在就不作用于此人。
- 泛美运动会泛美运动会是美洲的国际综合性体育活动,每隔四年举办一次。泛美运动会源自1920年代的中美洲运动会。1932年,举行泛美运动会的倡议首度被提出,其后成立了“泛美体育组织”(西班牙
- 剑潭神社台湾神宫是原位于台湾台北市剑潭附近的剑潭山山麓的神社,1901年完工时名为“台湾神社”,二战末期(1944年)升格为神宫,主祀死于台湾的北白川宫能久亲王,是台湾日治时期所建的神社中
- 达琳·莱卓提姆斯马蒂尔达·玛丽·贝蒂尔德·帕鲁塔(英语:Mathilda Marie Berthilde Paruta,1907年11月21日-1999年12月7日),以路易斯·莱卓提姆斯(法语:Darling Légitimus)闻名,是一名法国女演员。19
- 丙酸钙丙酸钙化学式Ca(C2H5COO)2,是丙酸的钙盐。丙酸钙可直接由氧化钙合成:生成的水会与过量的CaO生成氢氧化钙,过量的水于低压下(0.6〜0.95 bar),在70-90℃下蒸发。丙酸是一种常用的食
- 鹿豚亚科鹿豚(学名:Babyrousa)又名鹿猪,为偶蹄目猪科鹿豚亚科下的唯一一个属,分布于印尼苏拉威西岛、托吉安群岛、苏拉群岛及布鲁岛。此属原被认为是单型,但现已分成几个物种。最初鹿豚被