首页 >
挠率
✍ dations ◷ 2025-06-07 23:34:37 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数
s
{displaystyle s}
给出的空间曲线,单位切矢量为
t
{displaystyle {boldsymbol {t}}}
。如果在某一点 C 的曲率
κ
{displaystyle kappa }
不等于 0,那么主法矢量和次法矢量分别是n
=
t
′
κ
,
b
=
t
×
n
.
{displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数
s
{displaystyle s}
的导数。空间曲线在一点处的切矢量
t
{displaystyle {boldsymbol {t}}}
和主法矢量
n
{displaystyle {boldsymbol {n}}}
所张成的平面就是密切平面,密切平面的法矢量
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则
b
{displaystyle {boldsymbol {b}}}
不是常矢量。因为
b
{displaystyle {boldsymbol {b}}}
是单位矢量,所以
b
′
{displaystyle {boldsymbol {b}}'}
垂直于
b
{displaystyle {boldsymbol {b}}}
。又因为
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
,所以
b
′
=
t
′
×
n
+
t
×
n
′
=
t
×
n
′
{displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'}
,故
b
′
{displaystyle {boldsymbol {b}}'}
也垂直于
t
{displaystyle {boldsymbol {t}}}
。所以
b
′
{displaystyle {boldsymbol {b}}'}
与
n
{displaystyle {boldsymbol {n}}}
共线。挠率
τ
{displaystyle tau }
度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率
τ
(
s
)
{displaystyle tau (s)}
度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量
r
′
(
t
)
,
r
″
(
t
)
{displaystyle mathbf {r'} (t),mathbf {r''} (t)}
线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线
r
(
t
)
=
(
a
cos
t
,
a
sin
t
,
b
t
)
(
a
>
0
)
{displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)}
的曲率、挠率都是常数,分别为κ
=
a
a
2
+
b
2
,
τ
=
b
a
2
+
b
2
{displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6
相关
- 脂肪储存脂肪组织在人体组织学上属于人体内一种松散的结缔组织,由脂肪细胞(一种细胞质内含有脂肪滴的细胞)组成,用来储存脂肪。可分为单房性脂肪组织和多房性脂肪组织两大类:脂肪组织的主
- 氟化钠氟化钠(英语:sodium fluoride)是一种离子化合物,室温下为无色晶体或白色固体,化学式为NaF。氟离子的用途不少,而此化合物便是氟离子的主要来源。比起氟化钾,它不但相对便宜,也较少发
- 北美印第安语系美洲原住民语言(有时也称为印第安语)并不是一种语言,甚至也不是属于一种语系,而是美洲所有原住民的各种语言的总称。其中玛雅语曾经有自己的文字系统。随着15世纪末开始西方殖民
- 伊拉斯谟斯·达尔文伊拉斯谟斯·达尔文(Erasmus Darwin,1731年12月12日-1802年4月18日)是一位英国医学家、诗人、发明家、植物学家与生理学家。在多门自然科学领域中有所贡献,并且在诗作中融入了自
- 双脱氧链终止法双脱氧链终止法(英语:dideoxyribonucleotide [簡稱 dideoxy] chain-termination method),又称桑格法(英语:Sanger method),为一种常用的核酸测序技术,用于DNA分析,由英国生物化学家弗雷
- 石英石英(英语:quartz)是大陆地壳数量第二多的矿石,仅次于长石,其晶体结构是SiO4(硅-氧四面体)的连续框架,其中每个氧在两个四面体之间共享,得到SiO2的总化学式,石英的种类有很多,无色全
- 大千世界大千世界(Tri-sahasra-mahā-sahasra-lokadhātu,直译即为三千大千世界),是佛教说明世界组织的情形。每一个小世界(lokadhātu,组成宇宙的要素;Cakravāḍa,围绕小世界的铁围),其形式
- 黑巫术黑巫术,又称黑魔法,即邪恶的巫术,最早是由日本电子游戏创造的术法概念。主要以伤害别人为目的,透过放蛊、咒诅、秘密仪式、书符等方式,达到谋杀、致病、迷惑、役使、嫁祸等目的,使
- 文学史文学史是一个学科,专门研究文学发展历史。文学有着悠久的历史,实际从人类有了语言后,口头文学就已经出现,自从人类发明了记录书写的工具-文字后,记录文学即开始产生,当然并不是所
- 高溴酸盐高溴酸盐是高溴酸形成的盐类,含有四面体型的高溴酸根离子—BrO4−,其中溴的氧化态为+7。虽然同样是卤素,但不同于高氯酸和高碘酸,高溴酸盐非常难制备(包括高溴酸)。 高溴酸根离子