首页 >
挠率
✍ dations ◷ 2024-12-22 15:30:45 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数
s
{displaystyle s}
给出的空间曲线,单位切矢量为
t
{displaystyle {boldsymbol {t}}}
。如果在某一点 C 的曲率
κ
{displaystyle kappa }
不等于 0,那么主法矢量和次法矢量分别是n
=
t
′
κ
,
b
=
t
×
n
.
{displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数
s
{displaystyle s}
的导数。空间曲线在一点处的切矢量
t
{displaystyle {boldsymbol {t}}}
和主法矢量
n
{displaystyle {boldsymbol {n}}}
所张成的平面就是密切平面,密切平面的法矢量
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则
b
{displaystyle {boldsymbol {b}}}
不是常矢量。因为
b
{displaystyle {boldsymbol {b}}}
是单位矢量,所以
b
′
{displaystyle {boldsymbol {b}}'}
垂直于
b
{displaystyle {boldsymbol {b}}}
。又因为
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
,所以
b
′
=
t
′
×
n
+
t
×
n
′
=
t
×
n
′
{displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'}
,故
b
′
{displaystyle {boldsymbol {b}}'}
也垂直于
t
{displaystyle {boldsymbol {t}}}
。所以
b
′
{displaystyle {boldsymbol {b}}'}
与
n
{displaystyle {boldsymbol {n}}}
共线。挠率
τ
{displaystyle tau }
度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率
τ
(
s
)
{displaystyle tau (s)}
度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量
r
′
(
t
)
,
r
″
(
t
)
{displaystyle mathbf {r'} (t),mathbf {r''} (t)}
线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线
r
(
t
)
=
(
a
cos
t
,
a
sin
t
,
b
t
)
(
a
>
0
)
{displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)}
的曲率、挠率都是常数,分别为κ
=
a
a
2
+
b
2
,
τ
=
b
a
2
+
b
2
{displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6
相关
- 味噌味.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.larger{f
- 利妥昔单抗利妥昔单抗(通用名,国际非专利药品名称:Rituximab,由罗氏Roche药厂所生产的商品名为Mabthera (全球)、莫须瘤 (台湾);而由Genentech药厂所生产的商品名为Rituxan(全球)),是一种作用
- 喉痛咽喉痛(sore throat、throat pain,又称喉咙痛或喉痛),是指咽喉出现痛楚的症状,最主要的成因是咽喉炎(喉咙发炎),但可由其他原因引致,例如白喉和伤风感冒威胁。 服用非类固醇消炎止痛
- 西番莲属大约有500种,例如:西番莲属(学名:Passiflora)是西番莲科中拥有500个种的属。它们大部分是藤蔓,有一些种类是灌木,少数种类是草本植物,百香果Passiflora edulis是本属最有名的成员。
- Fesub2/sub(SOsub4/sub)sub3/sub硫酸铁是铁(III)的硫酸盐,化学式为Fe2(SO4)3。无水物存在单斜和菱方两种晶型。其水合物可溶于水。它被用作媒染剂以及工业废水的凝结剂,也用于颜料中。医药上用硫酸铁作收敛剂
- 欧文·理查森欧文·瑞查森爵士,FRS(英语:Sir Owen Willans Richardson,1879年4月26日-1959年2月15日),英国物理学家,他在热离子学发射领域做出重大贡献,特别是发现了瑞查森定律 (英语:Richardson's
- 僧伽罗语僧伽罗语(සිංහල),是斯里兰卡的官方语言之一。是占斯里兰卡大多数人口的僧伽罗人的语言;使用人口大约一千九百万。从1956年开始,僧伽罗语及泰米尔语同时都是《斯里兰卡宪法》
- 分馏分馏是分离几种不同沸点的挥发性物质的混合物的一种方法;对某一混合物进行加热,针对混合物中各成分的不同沸点进行冷却分离成相对纯净的单一物质过程。过程中没有新物质生成,只
- 平方十米公亩(are)是面积的单位,定义为100平方米,相当于边长为10米的正方形面积。1 公亩等于:转换公式:平方尧米、平方佑米(Ym²) 平方泽米、平方皆米(Zm²) 平方艾米(Em²) 平方拍米(Pm²) 平
- 李珥李珥(1536年-1584年),朝鲜王朝知名儒学者。字叔献、见龙, 号栗谷、石潭、愚斋,朝鲜半岛后世尊称其为李栗谷或栗谷先生。 朝鲜半岛朱子学新学派即“主气论”学派的代表人物。畿湖学