挠率

✍ dations ◷ 2025-04-03 12:14:05 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数 s {displaystyle s} 给出的空间曲线,单位切矢量为 t {displaystyle {boldsymbol {t}}} 。如果在某一点 C 的曲率 κ {displaystyle kappa } 不等于 0,那么主法矢量和次法矢量分别是n = t ′ κ , b = t × n . {displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数 s {displaystyle s} 的导数。空间曲线在一点处的切矢量 t {displaystyle {boldsymbol {t}}} 和主法矢量 n {displaystyle {boldsymbol {n}}} 所张成的平面就是密切平面,密切平面的法矢量 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} 是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则 b {displaystyle {boldsymbol {b}}} 不是常矢量。因为 b {displaystyle {boldsymbol {b}}} 是单位矢量,所以 b ′ {displaystyle {boldsymbol {b}}'} 垂直于 b {displaystyle {boldsymbol {b}}} 。又因为 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} ,所以 b ′ = t ′ × n + t × n ′ = t × n ′ {displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'} ,故 b ′ {displaystyle {boldsymbol {b}}'} 也垂直于 t {displaystyle {boldsymbol {t}}} 。所以 b ′ {displaystyle {boldsymbol {b}}'} 与 n {displaystyle {boldsymbol {n}}} 共线。挠率 τ {displaystyle tau } 度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率 τ ( s ) {displaystyle tau (s)} 度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量 r ′ ( t ) , r ″ ( t ) {displaystyle mathbf {r'} (t),mathbf {r''} (t)} 线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线 r ( t ) = ( a cos ⁡ t , a sin ⁡ t , b t )   ( a > 0 ) {displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)} 的曲率、挠率都是常数,分别为κ = a a 2 + b 2 , τ = b a 2 + b 2 {displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6

相关

  • 视力视力是指视觉的灵敏度及清晰度,主要取决于眼睛视网膜中心对视觉图像的敏锐程度和大脑中视皮层对图像的解析能力。
  • 大峡谷大峡谷(英语:Grand Canyon,霍皮语: Ongtupqa,亚瓦派语:Wi:kaʼi:la)位于美国亚利桑那州西北部,是科罗拉多河经过数百万年以上的冲蚀而形成,色彩斑斓,峭壁险峻。1979年大峡谷被列入世界
  • 贝凯希盖欧尔格·冯·贝凯希(Georg von Békésy,1899年6月3日-1972年6月13日),或贝凯希·哲尔吉(Békésy György),是一位出生在布达佩斯的匈牙利生物物理学家。1961年,他被授予了诺贝尔
  • 原生菌类原生菌类,如黏菌 (slime molds) 和水霉菌 (water molds),他们的外表特征与真菌界的成员相似,且皆为异营,储藏肝糖,细胞壁含纤维素与几丁质 (chitin),因此有些分类学家仍将黏菌与
  • 布莱恩·德鲁克尔布莱恩·J·德鲁克尔(英语:Brian J. Druker,1955年4月30日-),美国医学家,俄勒冈健康与科学大学教授。他是奈特癌症研究所主管、JELD-WEN血癌研究所主席。2009年他因开发治疗慢性粒
  • 子痫前症子痫前症(拉丁语:pre-eclampsia, preeclampsia,缩写为PE),又称前兆子痫,早前也称为妊娠毒血症(英语:toxemia),为怀孕期间发生的疾病,其特征为高血压与蛋白尿。该疾病通常发生于第三孕期
  • LGLG集团(韩语:LG그룹;英语:LG Corporation),旧名乐喜金星(韩语:럭키금성;英语:Lucky-GoldStar,简称乐金、LG),是一家总部位于韩国首尔的跨国企业集团,主要经营范围包括电子与通信技术、家电
  • 艾蜜莉·华森艾米丽·沃森(英语:Emily Watson,1967年1月14日-),英格兰女演员。她的首部电影作品是由拉斯·冯·提尔执导的《破浪而出》(1996)而获得欧洲电影奖、纽约影评人协会奖、国家影评人
  • 褐绒盖牛肝菌褐绒盖牛肝菌(学名:Boletus badius)是欧洲及北美洲一种很普遍的可食牛肝菌。它们虽与美味牛肝菌不怎么接近,但一些学者,如安东尼奥·卡路奇欧(Antonio Carluccio),仍高度赞扬这种食
  • 匈牙利行政区划匈牙利一级行政区分为三种:州下分镇、村两级。另外设有七个大区,一般期望能取代十九州建制:在这七个分区的基础上,欧盟划分为三个统计区(NUTS1):中匈牙利、大平原和北部和多瑙河外