挠率

✍ dations ◷ 2025-04-26 17:19:34 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数 s {displaystyle s} 给出的空间曲线,单位切矢量为 t {displaystyle {boldsymbol {t}}} 。如果在某一点 C 的曲率 κ {displaystyle kappa } 不等于 0,那么主法矢量和次法矢量分别是n = t ′ κ , b = t × n . {displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数 s {displaystyle s} 的导数。空间曲线在一点处的切矢量 t {displaystyle {boldsymbol {t}}} 和主法矢量 n {displaystyle {boldsymbol {n}}} 所张成的平面就是密切平面,密切平面的法矢量 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} 是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则 b {displaystyle {boldsymbol {b}}} 不是常矢量。因为 b {displaystyle {boldsymbol {b}}} 是单位矢量,所以 b ′ {displaystyle {boldsymbol {b}}'} 垂直于 b {displaystyle {boldsymbol {b}}} 。又因为 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} ,所以 b ′ = t ′ × n + t × n ′ = t × n ′ {displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'} ,故 b ′ {displaystyle {boldsymbol {b}}'} 也垂直于 t {displaystyle {boldsymbol {t}}} 。所以 b ′ {displaystyle {boldsymbol {b}}'} 与 n {displaystyle {boldsymbol {n}}} 共线。挠率 τ {displaystyle tau } 度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率 τ ( s ) {displaystyle tau (s)} 度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量 r ′ ( t ) , r ″ ( t ) {displaystyle mathbf {r'} (t),mathbf {r''} (t)} 线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线 r ( t ) = ( a cos ⁡ t , a sin ⁡ t , b t )   ( a > 0 ) {displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)} 的曲率、挠率都是常数,分别为κ = a a 2 + b 2 , τ = b a 2 + b 2 {displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6

相关

  • 过氧化氢过氧化氢,分子式H2O2,是除水外的另一种氢的氧化物。粘性比水稍微高,化学性质不稳定,一般以30%或60%的水溶液形式存放,其水溶液俗称双氧水。过氧化氢有很强的氧化性,且具弱酸性。纯
  • 结构域蛋白质结构域(英语:protein domain)是蛋白质中的一类结构单元,是构成蛋白质(三级)结构的基本单元。有些球形蛋白的一条肽链,或以共价键相连的两条或多条肽链在空间结构上可以区分为
  • 卵生卵生(英语:Oviparity),是指在有性生殖中,母体的卵受精后形成为个体的动物,以此种方式进行生育的叫做卵生动物(Ovipara)。新个体从母体排放出来后,以卵内的蛋白、蛋黄提供营养,继续发育
  • 玻璃碳玻璃碳(glassy carbon),是结合了玻璃和陶瓷的属性的非石墨化碳。特点是耐高温,高硬度(莫氏硬度7),低密度,低电阻,低摩擦,低导热性,高耐化学侵蚀性,不被气体和液体渗透。 玻璃碳作为电极
  • 全民健保全民健康保险,一般简称为“全民健保”或“健保”,是一种强制性保险的福利政策,法源是依据《中华民国宪法增修条文》所实施的全民医疗保险制度。为增进全体国民健康,中华民国于19
  • 科恩伯格罗杰·大卫·科恩伯格(英语:Roger David Kornberg,1947年4月24日-),美国生物化学家,斯坦福大学结构生物学教授。因其对“真核转录的分子基础所作的研究”而荣获2006年诺贝尔化学奖
  • 亚特兰大国际机场哈茨菲尔德-杰克逊亚特兰大国际机场(英语:Hartsfield-Jackson Atlanta International Airport;IATA代码:ATL;ICAO代码:KATL;FAA代码:ATL),简称亚特兰大机场、哈茨菲尔德-杰克逊机场或
  • 女婿婿(拼音:xù,注音:ㄒㄩˋ)意思是妻子对自己丈夫的称谓,也可以是女儿、妹妹及其他晚辈的丈夫。女婿则常指女儿的丈夫,有时也指代自己的丈夫。按《说文解字》,“婿”通“壻”,古时女子
  • 板桥区坐标:25°00′35″N 121°27′33″E / 25.0096703°N 121.4590989°E / 25.0096703; 121.4590989板桥区(台湾话: Pang-kiô-khu;客家话: Piông-khièu-khî;旧称枋桥、摆接)为台湾
  • 库页岛桦太厅(日语:樺太庁〔樺太廳〕/からふとちょう Karafuto chō */?)是日本治理库页岛(日本称为桦太)时期,所设立管理当地的地方行政官厅。当时日本的管辖范围,是北纬50度以南、经由