首页 >
挠率
✍ dations ◷ 2025-08-16 13:03:48 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数
s
{displaystyle s}
给出的空间曲线,单位切矢量为
t
{displaystyle {boldsymbol {t}}}
。如果在某一点 C 的曲率
κ
{displaystyle kappa }
不等于 0,那么主法矢量和次法矢量分别是n
=
t
′
κ
,
b
=
t
×
n
.
{displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数
s
{displaystyle s}
的导数。空间曲线在一点处的切矢量
t
{displaystyle {boldsymbol {t}}}
和主法矢量
n
{displaystyle {boldsymbol {n}}}
所张成的平面就是密切平面,密切平面的法矢量
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则
b
{displaystyle {boldsymbol {b}}}
不是常矢量。因为
b
{displaystyle {boldsymbol {b}}}
是单位矢量,所以
b
′
{displaystyle {boldsymbol {b}}'}
垂直于
b
{displaystyle {boldsymbol {b}}}
。又因为
b
=
t
×
n
{displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}}
,所以
b
′
=
t
′
×
n
+
t
×
n
′
=
t
×
n
′
{displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'}
,故
b
′
{displaystyle {boldsymbol {b}}'}
也垂直于
t
{displaystyle {boldsymbol {t}}}
。所以
b
′
{displaystyle {boldsymbol {b}}'}
与
n
{displaystyle {boldsymbol {n}}}
共线。挠率
τ
{displaystyle tau }
度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率
τ
(
s
)
{displaystyle tau (s)}
度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量
r
′
(
t
)
,
r
″
(
t
)
{displaystyle mathbf {r'} (t),mathbf {r''} (t)}
线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线
r
(
t
)
=
(
a
cos
t
,
a
sin
t
,
b
t
)
(
a
>
0
)
{displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)}
的曲率、挠率都是常数,分别为κ
=
a
a
2
+
b
2
,
τ
=
b
a
2
+
b
2
{displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6
相关
- 提洛岛提洛岛(英文: Delos, 希腊文: Δήλος, Dhilos)是爱琴海上的一个岛屿,基克拉泽斯群岛的心脏。在希腊神话中,它是女神勒托的居住地,在这里她生育了阿波罗和阿耳忒弥斯。因此长
- 显微镜座显微镜座(英语:Microscopium)是南天半球中的一个星座,由法国天文学家尼可拉·路易·拉卡伊于18世纪确立,是拉卡伊星座家族中以科学仪器命名的12个星座之一。显微镜座的英文名来自
- 涂料涂料,在中国传统称为油漆。中国涂料界比较权威的《涂料工艺》一书是这样定义的:“涂料是一种材料,这种材料可以用不同的施工工艺涂覆在物件表面,形成粘附牢固、具有一定强度、连
- 泉州晋江庵山沙丘遗址庵山沙丘遗址,位于中国福建省晋江市深沪镇坑边村,为一个省级文物保护单位,类型为古遗址,为第七批福建省文物保护单位,公布时间为2009年11月16日。庵山沙丘遗址的历史年代为青铜时
- 毒芹碱毒芹碱是一个有毒的生物碱,最早在毒参中发现,对人和家畜有神经毒性,作用于外周神经系统,会使人窒息,服用0.2g就有生命危险。古希腊哲学家苏格拉底即死于毒芹碱。毒芹碱化学式为“
- 铁氰化钾铁氰化钾、六氰合铁(III)酸钾,是一种无机化合物,化学式为K3,俗称赤血盐。该亮红色固体盐含有3−配离子。 它可溶于水,水溶液带有黄绿色荧光。铁氰化钾是用氯气氧化亚铁氰化钾溶
- 刚毛刚毛(英语:Bristle)是指坚硬的毛发、羽毛或人造聚合物,包括动植物身上的毛和工具上的刷毛。另外,鬃,如猪鬃、马鬃则指这些动物上的硬毛。尼龙刚毛常用于制作清洁用具,如牙刷、厕刷
- 冰雪雪是降水形式的一种,是从云中降落的结晶状固体冰,常以雪花的形式存在。雪是由小的冰颗粒物构成,是一种颗粒材料(英语:granular material),它的结构开放,因此显得柔软。因为气温和湿
- 奥斯曼帝国苏丹穆罕默德五世穆罕默德五世(1844年11月2日—1918年7月3日)奥斯曼帝国第三十五代苏丹和哈里发(1909年—1918年在位)。阿卜杜勒·迈吉德苏丹(1839年—1861年)之子。早年受伊斯兰传统教育,研究波斯
- 李如柏李如柏(1553年-1620年),辽东铁岭卫人,是明朝将领李成梁次子,明辽东总兵,习知辽中情事。萨尔浒之战,兵败,逃回后自裁。曾随兄李如松与宋应昌前往朝鲜,参与万历援朝战争。1619年,明神宗令