毕奥-萨伐尔定律

✍ dations ◷ 2025-07-01 05:58:58 #物理定律,静磁学,电磁学

在静磁学里,毕奥-萨伐尔定律(Biot-Savart Law)以方程描述,电流在其周围所产生的磁场。采用静磁近似,当电流缓慢地随时间而改变时(例如当载流导线缓慢地移动时),这定律成立,磁场与电流的大小、方向、距离有关。毕奥-萨伐尔定律是以法国物理学者让-巴蒂斯特·毕奥与费利克斯·萨伐尔命名。

毕奥-萨伐尔定律表明,假设源位置为 r {\displaystyle \mathbf {r} '} 的微小线元素 d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 有电流 I {\displaystyle I} ,则 d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 作用于场位置 r {\displaystyle \mathbf {r} } 的磁场为

其中, d B {\displaystyle \mathrm {d} \mathbf {B} } 是微小磁场(这篇文章简称磁通量密度为磁场), μ 0 {\displaystyle \mu _{0}} 是磁常数。

已知电流密度 J ( r ) {\displaystyle \mathbf {J} (\mathbf {r} ')} ,则有:

其中, d 3 r {\displaystyle \mathrm {d} ^{3}{r}'} 为微小体积元素, V {\displaystyle \mathbb {V} '} 是积分的体积。

在流体力学中,以涡度对应电流、速度对应磁场强度,便可应用毕奥-萨伐尔定律以计算涡线 (vortex line)导出的速度。

毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。采用国际单位制,用方程表示,

其中, I {\displaystyle I} 是源电流, L {\displaystyle \mathbb {L} '} 是积分路径, d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 是源电流的微小线元素。

应用这方程,必须先选出磁场的场位置。固定这场位置,积分于源电流的路径,就可以计算出在场位置的磁场。请注意,这定律的应用,隐性地依赖著磁场的叠加原理成立;也就是说,每一个微小线段的电流所产生的磁场,其矢量的叠加和给出总磁场。对于电场和磁场,叠加原理成立,因为它们是一组线性微分方程的解答。更明确地说,它们是麦克斯韦方程组的解答。

当电流可以近似为流过无穷细狭导线,上述这方程是正确的。但假若导线是宽厚的,则可用包含导线体积 V {\displaystyle \mathbb {V} '} 的积分方程:

其中, J {\displaystyle \mathbf {J} } 是电流密度, d 3 r {\displaystyle \mathrm {d} ^{3}r'} 是微小体积元素。

毕奥-萨伐尔定律是静磁学的基本定律,在静磁学的地位,类同于库仑定律之于静电学。毕奥-萨伐尔定律和安培定律的关系,则如库仑定律之于高斯定律。

假若无法采用静磁近似,例如当电流随着时间变化太快,或当导线快速地移动时,就不能使用毕奥-萨伐尔定律,必须改用杰斐缅柯方程。

由于点电荷的运动不能形成电流,所以,必须使用推迟势的方法来计算其电场和磁场。假设一个点电荷 q {\displaystyle q} 以等速度 v {\displaystyle \mathbf {v} } 移动,在时间 t {\displaystyle t} 的位置为 w = v t {\displaystyle \mathbf {w} =\mathbf {v} t} 。那么,麦克斯韦方程组给出此点电荷所产生的电场和磁场:

其中, θ {\displaystyle \theta } v {\displaystyle \mathbf {v} } r w {\displaystyle \mathbf {r} -\mathbf {w} } 之间的夹角。

v 2 c 2 {\displaystyle v^{2}\ll c^{2}} 时,电场和磁场可以近似为

这方程最先由奥利弗·亥维赛于1888年推导出来,称为毕奥-萨伐尔点电荷定律。

这里,我们要从毕奥-萨伐尔定律推导出安培定律和高斯磁定律 (Gauss's law for magnetism)。若想查阅此证明,请点选“显示”。

应用一个矢量恒等式,

将这恒等式带入毕奥-萨伐尔方程。由于梯度只作用于无单撇号的坐标,可以将梯度移到积分外:

应用一个矢量恒等式,

所以,高斯磁定律成立:

任意两个矢量 A 1 {\displaystyle \mathbf {A} _{1}} A 2 {\displaystyle \mathbf {A} _{2}} 的叉积,取其旋度,有以下矢量恒等式,:

取旋度于毕奥-萨伐尔方程的两边,稍加运算,可以得到

应用著名的狄拉克δ函数关系式

可以得到

注意到x-分量,

由于电流是稳定的, J ( r ) = 0 {\displaystyle \nabla ^{'}\cdot \mathbf {J} (\mathbf {r} ')=0} ,所以,

其中, d a {\displaystyle \mathrm {d} \mathbf {a} '} 是一个微小源面积元素, S {\displaystyle \mathbb {S} '} 是体积 V {\displaystyle \mathbb {V} '} 外表的闭曲面。

这个公式右边第二项目是一个闭曲面积分,只与体积内所包含的被积函数,或体积外表曲面的电流密度有关。而体积可大可小,我们可以增大这体积,一直增大到外表的闭曲面没有任何净电流流出或流入,也就是说,电流密度等于零。这样,就可以得到安培定律。

相关

  • 中王国第八第十中王国时期是古埃及历史上的一个时期,包括第十一、第十二、第十三与第十四王朝,通常划定在前2133-1786年,但严格地说,应该从第十一王朝的孟图霍特普二世时代(约前2060-2010
  • 蛙蟹科见内文蛙蟹科(学名:Raninidae)是螃蟹的其中一个科,模式属是蛙形蟹。根据现存的化石纪录,蛙蟹科生物最早期的化石于早白垩纪的阿尔布阶出现。常见的蛙蟹科生物有:蛙蟹科的外形独特,
  • Julia (编程语言)Julia是一种高级通用动态编程语言,它最初是为了满足高性能数值分析和计算科学的需要而设计的,不需要编译器,速度快,也可用于客户端和服务器的Web用途、低级系统编程或用作规约语
  • 蝙蝠携带的病毒蝙蝠携带的病毒是指以蝙蝠为主要储蓄宿主、能够传染到其他生物的病毒,包括冠状病毒、汉坦病毒、亨尼巴病毒、狂犬病毒、埃博拉病毒等。蝙蝠携带的病毒可以经由其唾液传播,唾液
  • 海洋真菌海洋真菌(marine fungi),或海生真菌,是生活在海洋或潮间带中的真菌。海洋真菌并不是一个分类单元,而是泛指分属于不同分类群,但生长环境均位于海洋或潮间带的多种真菌。绝对海生真
  • 缟状云缟状云(学名:Velum,缩写: ),是一种云的附属结构,主要见于浓积云及积雨云顶。常呈纱状、盖状且向水平伸展,存在于一块或多块积状云的上方,与其直接相连或相隔一段很小的距离。缟状
  • 全民政治全员参与制又称为动态治理,是一种治理体制,目的在于达成有效的治理方式,创造和谐的社会环境、有生产力的组织和运作方式。其特别之处在于决策采用认可决,而非多数投票决,且决策
  • 洪忠中洪忠中(罗马拼音:?,1964年7月19日-),印尼语名:Eddy Hartono Arbie,印尼前男子羽毛球运动员,全盛时代为1980年代后期至1990年代初期。他刚出道时有一小段时间担任单打选手,随后即专攻双
  • 劳拉·巴斯劳拉·巴斯 (意大利语:Laura Bassi,1711年11月29日-1778年2月20日),18世纪意大利科学家,她是欧洲第二位获得学术资格的女性, 同时也是欧洲第一位女教授。劳拉·巴斯出生在博洛尼亚的
  • 顺义县 (南朝梁)顺义县,中国古县名。南朝梁置,治所在今湖北省随州市北。梁属北隋郡。西魏属淮南郡,隋朝时,属汉东郡。唐朝武德五年(622年)废。