毕奥-萨伐尔定律

✍ dations ◷ 2025-02-23 10:27:11 #物理定律,静磁学,电磁学

在静磁学里,毕奥-萨伐尔定律(Biot-Savart Law)以方程描述,电流在其周围所产生的磁场。采用静磁近似,当电流缓慢地随时间而改变时(例如当载流导线缓慢地移动时),这定律成立,磁场与电流的大小、方向、距离有关。毕奥-萨伐尔定律是以法国物理学者让-巴蒂斯特·毕奥与费利克斯·萨伐尔命名。

毕奥-萨伐尔定律表明,假设源位置为 r {\displaystyle \mathbf {r} '} 的微小线元素 d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 有电流 I {\displaystyle I} ,则 d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 作用于场位置 r {\displaystyle \mathbf {r} } 的磁场为

其中, d B {\displaystyle \mathrm {d} \mathbf {B} } 是微小磁场(这篇文章简称磁通量密度为磁场), μ 0 {\displaystyle \mu _{0}} 是磁常数。

已知电流密度 J ( r ) {\displaystyle \mathbf {J} (\mathbf {r} ')} ,则有:

其中, d 3 r {\displaystyle \mathrm {d} ^{3}{r}'} 为微小体积元素, V {\displaystyle \mathbb {V} '} 是积分的体积。

在流体力学中,以涡度对应电流、速度对应磁场强度,便可应用毕奥-萨伐尔定律以计算涡线 (vortex line)导出的速度。

毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。采用国际单位制,用方程表示,

其中, I {\displaystyle I} 是源电流, L {\displaystyle \mathbb {L} '} 是积分路径, d {\displaystyle \mathrm {d} {\boldsymbol {\ell }}'} 是源电流的微小线元素。

应用这方程,必须先选出磁场的场位置。固定这场位置,积分于源电流的路径,就可以计算出在场位置的磁场。请注意,这定律的应用,隐性地依赖著磁场的叠加原理成立;也就是说,每一个微小线段的电流所产生的磁场,其矢量的叠加和给出总磁场。对于电场和磁场,叠加原理成立,因为它们是一组线性微分方程的解答。更明确地说,它们是麦克斯韦方程组的解答。

当电流可以近似为流过无穷细狭导线,上述这方程是正确的。但假若导线是宽厚的,则可用包含导线体积 V {\displaystyle \mathbb {V} '} 的积分方程:

其中, J {\displaystyle \mathbf {J} } 是电流密度, d 3 r {\displaystyle \mathrm {d} ^{3}r'} 是微小体积元素。

毕奥-萨伐尔定律是静磁学的基本定律,在静磁学的地位,类同于库仑定律之于静电学。毕奥-萨伐尔定律和安培定律的关系,则如库仑定律之于高斯定律。

假若无法采用静磁近似,例如当电流随着时间变化太快,或当导线快速地移动时,就不能使用毕奥-萨伐尔定律,必须改用杰斐缅柯方程。

由于点电荷的运动不能形成电流,所以,必须使用推迟势的方法来计算其电场和磁场。假设一个点电荷 q {\displaystyle q} 以等速度 v {\displaystyle \mathbf {v} } 移动,在时间 t {\displaystyle t} 的位置为 w = v t {\displaystyle \mathbf {w} =\mathbf {v} t} 。那么,麦克斯韦方程组给出此点电荷所产生的电场和磁场:

其中, θ {\displaystyle \theta } v {\displaystyle \mathbf {v} } r w {\displaystyle \mathbf {r} -\mathbf {w} } 之间的夹角。

v 2 c 2 {\displaystyle v^{2}\ll c^{2}} 时,电场和磁场可以近似为

这方程最先由奥利弗·亥维赛于1888年推导出来,称为毕奥-萨伐尔点电荷定律。

这里,我们要从毕奥-萨伐尔定律推导出安培定律和高斯磁定律 (Gauss's law for magnetism)。若想查阅此证明,请点选“显示”。

应用一个矢量恒等式,

将这恒等式带入毕奥-萨伐尔方程。由于梯度只作用于无单撇号的坐标,可以将梯度移到积分外:

应用一个矢量恒等式,

所以,高斯磁定律成立:

任意两个矢量 A 1 {\displaystyle \mathbf {A} _{1}} A 2 {\displaystyle \mathbf {A} _{2}} 的叉积,取其旋度,有以下矢量恒等式,:

取旋度于毕奥-萨伐尔方程的两边,稍加运算,可以得到

应用著名的狄拉克δ函数关系式

可以得到

注意到x-分量,

由于电流是稳定的, J ( r ) = 0 {\displaystyle \nabla ^{'}\cdot \mathbf {J} (\mathbf {r} ')=0} ,所以,

其中, d a {\displaystyle \mathrm {d} \mathbf {a} '} 是一个微小源面积元素, S {\displaystyle \mathbb {S} '} 是体积 V {\displaystyle \mathbb {V} '} 外表的闭曲面。

这个公式右边第二项目是一个闭曲面积分,只与体积内所包含的被积函数,或体积外表曲面的电流密度有关。而体积可大可小,我们可以增大这体积,一直增大到外表的闭曲面没有任何净电流流出或流入,也就是说,电流密度等于零。这样,就可以得到安培定律。

相关

  • 洗衣粉洗衣粉是洗衣服时,添加溶解在水中来清洗,使衣服更容易洗净的粉状物。洗衣粉的成分一般主要包括表面活性剂、软水剂、碱剂、漂白剂等,其中一些化合物或造成水污染。洗衣粉并不适
  • Carpe diem活在当下(常译作及时行乐)为拉丁语格言“Carpe diem”(把握今朝),语出自贺拉斯的拉丁语诗集《颂歌》。完整诗文为“carpe diem, quam minimum credula postero”。可翻译为“活在
  • 偏害共生片害共生,又称偏害共栖、偏害共生,是两种生物间共生关系的一种。片害共生有的时候也称为拮抗(antagonism)。在片害共生中,一种生物对另一种产生抑制、伤害作用,甚至杀死对方,但本身
  • 黄倩萍黄倩萍(1968年8月2日-),是台湾新闻主播之一,现任三立新闻台主播、《前进新台湾》代班主持人。曾任中天新闻台主播、三立新闻台《54新观点》主持人,其外语能力相当不错,并成功考取外
  • M109A6自行火炮M109是一种美制155毫米口径自走炮,于1963年开始进入美国陆军服役,提供师和旅级部队所需的曲射火力支援。从1963年量产至今,生产总数已超过7,000辆以上,使用国超过30个,可说是1970
  • 山火山火,又称野火、林火、森林大火、森林火灾,是一种通常发生在林野间难以控制的火情。通常是由闪电引起的,其他一些常见的原因有人为疏忽、故意纵火、火山爆发和火山碎屑云,热浪、
  • 编码簿每一个影像向量,X,与一组代表性样本或码向量(Codevectors), X ^
  • 2014年新西兰羽毛球大奖赛2014年新西兰羽毛球大奖赛为2014年度的新西兰羽毛球公开赛,是2014年世界羽联大奖赛的其中一站。本届赛事于2014年4月15日至4月19日在新西兰奥克兰内的北岸活动中心(North Shor
  • 墨西哥玉米片墨西哥玉米片、玉米饼、或墨西哥脆饼(tortilla chips)是由墨西哥薄饼(tortilla)翻制的零食。一般是将整块由玉米、蔬菜油、糖、盐和水做成的墨西哥薄饼切成楔形小片、或直接从揉
  • 食品模型食品模型(日语:食品样本),或称食物模型、料理模型,是一种模拟食物真实样貌制成的比例模型。该种模型经常被餐馆放置在其入口,以向顾客具体描绘其所贩售菜肴。其制作原料主要为蜡或