核主成分分析

✍ dations ◷ 2025-12-05 00:12:29 #多变量统计,信号处理,机器学习算法

核主成分分析(英语:kernel principal component analysis,简称kernel PCA)是多变量统计领域中的一种分析方法,是使用核方法(英语:Kernel method)对主成分分析的非线性扩展,即将原数据通过核映射到再生核希尔伯特空间(英语:Reproducing kernel Hilbert space)后再使用原本线性的主成分分析。

线性PCA对于中心化后的数据进行分析,即

其中 x i {\displaystyle \mathbf {x} _{i}} 个数据点在 d < N {\displaystyle d<N} 个数据点 x i {\displaystyle \mathbf {x} _{i}} 维空间

中,就能很容易地构建一个超平面将数据点作任意聚类。不过由于经 Φ {\displaystyle \Phi } 中每一列的个元素代表了转换后的一个数据点与所有个数据点的点积。

由于我们并不在特征空间中进行计算,核PCA方法不直接计算主成分,而是计算数据点在这些主成分上的投影。特征空间中的一点在第k个主成分 V k {\displaystyle V^{k}} 为数据点的数量, λ {\displaystyle \lambda } a {\displaystyle \mathbf {a} } 则分别为 K {\displaystyle K} 的特征值与特征向量。为了归一化 a k {\displaystyle \mathbf {a} ^{k}} ,我们要求

值得注意的是,无论是否在原空间中对 x {\displaystyle x} 中心化,我们无法保证数据在特征空间中是中心化的。由于PCA要求对数据中心化,我们可以对K“中心化”:

其中 1 N {\displaystyle \mathbf {1_{N}} } 代表一个每个元素值皆为 1 / N {\displaystyle 1/N} N × N {\displaystyle N\times N} 矩阵。于是我们可以使用 K {\displaystyle K'} 进行前述的核PCA计算。

在使用核PCA时,还有一点值得注意。在线性PCA中,我们可以通过特征值的大小对特征向量进行排序,以度量每个主成分所能够解释的数据方差。这对于数据降维十分有用,而这一技巧也可以用在核PCA中。不过,在实践中有时会发现得到所有方差皆相同,这通常是源于错误选择了核的尺度。

在实践中,大数据集会使K变得很大,从而导致存储问题。一种解决方式是先对数据集聚类,然后再对每一类的均值进行核PCA计算。有时即便使用此种方法仍会导致相对很大的K,此时我们可以只计算K中最大的P个特征值及相对应的特征向量。

考虑图中所示的三组同心点云,我们试图使用核PCA识别这三组。图中各点的颜色并不是算法的一部分,仅用于展示各组数据点在变换前后的位置。

首先,我们使用核

进行核PCA处理,得到的结果如第二张图所示。

其次,我们再使用高斯核

该核是数据接近程度的一种度量,当数据点重合时为1,而当数据点相距无限远时则为0。结果为第三张图所示。

此时我们注意到,仅通过第一主成分就可以区别这三组数据点。而这对于线性PCA而言是不可实现的,因而线性PCA只能在给定维(此处为二维)空间中操作,而此时同心点云是线性不可分的。

核PCA方法还可用于新奇检测(novelty detection)与数据降噪等。

相关

  • 索马里面积以下资讯是以2019年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2010估计国内生产总值(国际汇率) 以下资讯是以2007年估计人类发展指数 以下资讯是以]]估计索马里联
  • 单数单数有两个不同的含义:
  • 休伦-马尼斯蒂休伦-马尼斯蒂国家森林(英语:Huron-Manistee National Forests)由两座分开的国家森林构成:休伦国家森林(英语:Huron National Forest)和马尼斯蒂国家森林(英语:Manistee National For
  • 紫茉莉粉豆花(学名:Mirabilis jalapa)别名草茉莉、夜娇娇、紫茉莉、夜晚花、胭脂花、洗澡花、煮饭花、地雷花、白粉花、潮来花等,属紫茉莉科植物。紫茉莉,虽然名字中含有“茉莉”,但不是
  • 汉钟离锺离权,复姓锺离,名权,字寂道,号云房子((公元168年(农历7月27日)-公元256年)),燕京人,自称“天下都散汉锺离权”,吕纯阳真人之师,道教仙人,八仙之一、全真道五阳祖师之一,锺吕内丹派代表人物,
  • 横岗街道横岗街道是中国广东省深圳市龙岗区下辖的一个街道。于2004年由原来之横岗镇演变而来。2016年12月26日,原横岗街道一分为二,分置横岗和园山两个街道。横岗街道位于龙岗区中部,辖
  • 二尖瓣狭窄二尖瓣狭窄是一种较为常见的心瓣膜病。在正常情况下,二尖瓣在左心室舒张时打开,使血液从左心房流入左心室。患有二尖瓣狭窄症的病人二尖瓣在左心室舒张时不能够完全开放,使左心
  • 黄素单核苷酸黄素单核苷酸(英语:Flavin mononucleotide,FMN)是一个由核黄素激酶自核黄素(维生素B2)产生出来的生物分子,其功能包括了NADH脱氢酶在内的多种氧化还原酶的辅基并且作为生物感蓝光蛋
  • 铁木剑凤蝶 (Ney, 1911)铁木剑凤蝶()也称高岭升天凤蝶、木生凤蝶、铁木剑凤蝶、台湾剑凤蝶,是剑凤蝶属中的一种蝴蝶。本种分布于中国华东、华南、华西、中南半岛北部、台湾本岛北部中低海
  • 阿乙 (作家)阿乙(1976年-),本名艾国柱,江西瑞昌人,中国当代小说家。曾任警察、编辑,现专事写作。