-2

✍ dations ◷ 2025-07-19 06:54:39 #整数,二

<< -10‍-9‍-8‍-7‍-6‍-5‍-4‍-3-2-1>>

在数学中,负二是距离原点两个单位的负整数,记作−2或−2,是2的加法逆元或相反数,介于−3与−1之间,亦是最大的负偶数。除了少数探讨整环素元的情况外,一般不会将负二视为素数。

负二有时会做为幂次表达平方倒数用于国际单位制基本单位的表示法中,如m s-2。此外,在部分领域如软件设计,负一通常会作为函数的无效回传值,类似地负二有时也会用于表达除负一外的其他无效情况,例如在整数数列在线大全中,负一作为不存在、负二作为有无穷多解。

负二的拥有的约数若负约数也列入计算则与二的约数(含负约数)相同,为-2、-1、1、2。根据定义一般不对负数进行素因数分解,虽然能将 1 {\displaystyle -1}  = 1且公比 = −2时,上述公式的结果为1/3。然而这个级数应为发散级数,其前几项的和为:

这个级数虽然发散,然而欧拉对这个级数的结果给出了一个值,即1/3,而这个和称为欧拉之和(英语:Euler summation)。

若一数的幂为负二次,则其可以视为平方的倒数,这个部分用于函数也适用,而日常生活中偶尔会用于表示不带除号的单位,如加速度一般计为m/s2,而在国际单位制基本单位的表示法中也可以计为 m s-2。

而平方倒数中较常讨论的议题包括对任意实数 n {\displaystyle n} 而言,其平方倒数 n 2 {\displaystyle n^{-2}} 结果恒正、平方反比定律、网格湍流衰减以及巴塞尔问题。其中巴塞尔问题指的是自然数的负二次方和(平方倒数和)会收敛并趋近于 π 2 6 {\textstyle {\frac {\pi ^{2}}{6}}} ,即:

而这个值与黎曼ζ函数代入2的结果相同。

对任意实数而言,平方倒数的结果恒正。例如负二的平方倒数为四分之一。前几个自然数的平方倒数为:

负二的平方根在定义虚数单位 i {\displaystyle i} 满足 i 2 = 1 {\displaystyle {{i}^{2}}=-1} 后可透过等式 x = ± i x {\displaystyle {\sqrt {-x}}=\pm i{\sqrt {x}}} 得出,而对负二而言,则为 2 = ± i 2 {\displaystyle {\sqrt {-2}}=\pm i{\sqrt {2}}} 。而负二平方根的主值为 i 2 {\displaystyle i{\sqrt {2}}}

负二通常以在2前方加入负号表示,通常称为“负二”或大写“负贰”,但不应读作“减二”,而在某些场合中,会以“零下二”表达-2,例如在表达温度时。

在二进制时,尤其是计算机运算,负数的表示通常会以补码来表示,即将所有位数填上1,再向下减。此时,负二计为“......11111110(2)”,更具体的,4位整数负二计为“1110(2)”;8位整数负二计为“11111110(2)”;16位整数负二计为“1111111111111110(2)”而在使用负号的表示法中,负二计为“-10(2)”。

正负二( ± 2 {\displaystyle \pm 2} )是透过正负号表达正二与负二的方式,其可以用来表示4的平方根或二次方程 x 2 = 4 {\displaystyle x^{2}=4} 的解,即 4 = ± 2 {\displaystyle {\sqrt {4}}=\pm {2}} 。正负二比负二更常出现于文化中,例如一些音乐创作或者纪录片《±2℃》讲述全球气温提升或降低两度对环境可能造成的影响。

相关

  • 行为能力行为能力(capacity)为一种法律上的概念,其与“权利能力”及“意思能力”不同,乃指为法律行为之资格,亦即个人以独自的意思表示,使其行为发生法律上效果的资格而言。民法中基于私法
  • 星形胶细胞星形胶质细胞,也称星状细胞(astrocyte、AS),为神经胶质细胞的一种。星形胶质细胞在大脑中的比例尚不明确。有研究发现,星形胶质细胞的比例因区域而异,占所有神经胶质细胞的20%至40%
  • 853年重要事件及趋势逝世重要人物
  • 森林书森林书(天城体:आरण्यक,IAST:āraṇyaka,字面意思为“森林之书”,音译为“阿兰若书”)是古印度的一种宗教文献,以早期古典梵语写成,是广义的吠陀文献之一。按照传统说法,森林书是
  • 谐谑曲诙谐曲(Scherzo),是一种快速,节奏强烈的器乐曲,一般为三拍子,有令人惊奇、幽默的特点,是从小步舞曲中发展出来的,原文是意大利文意思是“玩笑”。海顿首先在写作奏鸣曲时用诙谐曲代
  • 生态层次分析生态层次分析(Ecological levels of analysis)是立基在Bronfenbrenner的“人类生态论”(human ecology)。由于人类与环境是相互影响,单一事件或问题可能有多重原因所导致,故透
  • 新建陆军新军全称“新建陆军”,是清朝政府于甲午战争之后编练的新式陆军军队,为清末新政的一部分。这支军队的特色是完全使用西式的军事制度、训练以及装备,是清朝最后一支有战斗力的正
  • 向岛建向岛建(1966年1月9日-),前日本足球运动员。静冈县出身。位置为前锋。2001年引退后,2003年曾被选为日本国家五人制足球队的候补选手。现在为日本川崎前锋队的星探。
  • 午夜0时的吻《午夜0时的吻》(日语:午前0時、キスしに来てよ)是由日本漫画家MIKIMOTO凛所创作的日本漫画作品。于《别册FRIEND》(讲谈社)2015年5月号开始进行连载中。单行本目前共发行11卷。
  • 健康保险便利和责任法案美国的医疗服务行业必须遵守该国政府1996年颁布的《健康保险隐私及责任法案》(英语:Health Insurance Portability and Accountability Act,缩写HIPAA)。该法案制定了一系列安全