代数几何

✍ dations ◷ 2025-06-28 09:38:36 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中的单位球面被定义为满足方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。一个 "倾斜的" 圆周在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中可以被定义为同时满足如下两个方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。现在我们开始进入稍微抽象的领域。考虑一个数域 k {displaystyle k} ,在古典代数几何中这个域通常是复数域 C {displaystyle mathbf {C} } ,现在我们把它推广为一个代数封闭的数域。我们定义数域 k {displaystyle k} 上的 n {displaystyle n} 维仿射空间 A k n {displaystyle {mathbb {A} }_{k}^{n}} ,简单讲来,它只是一些点的集合,以下为方便我们简记为 A n {displaystyle {mathbb {A} }^{n}} 。如果函数可以被写为多项式,即如果有多项式 p {displaystyle p} 在对 A n {displaystyle {mathbb {A} }^{n}} 上的每个点都有n {displaystyle n} 维仿射空间的正则函数正是数域 k {displaystyle k} 上 n {displaystyle n} 个变量的多项式。我们将 A n {displaystyle {mathbb {A} }^{n}} 上的正则函数记为 k [ A n ] {displaystyle k} 。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:

相关

  • 造成疾病致病真菌(英语:Pathogenic Fungi)是引起人类或其他生物产生真菌病的真菌。 已知大约300种真菌对人类具有致病性。虽然真菌是真核生物,但是许多致病真菌也是微生物。对人类致病的
  • 行政行政机关,又称行政机构、行政部门,其工作是对组织进行日常的管理并施行法律政策等相关活动,是三权分立中的其中一部分。广义上,行政定义为负责国家政策的执行的政府机构。狭义上
  • GHz吉赫就是吉咖赫兹,频率的基本单位为赫兹(Hz),吉咖(Giga)是用于构成十进倍数单位的词头 ,表示的因数为10的9次方,吉咖简称吉(G)。吉赫对应的英文是GHz。
  • 塔伦蒂诺语塔伦蒂诺语是意大利普利亚区东南部所使用的一种语言,大部分使用者居住在塔兰托。也有部分意大利裔美国人使用此语言,他们主要居住在加利福尼亚。塔伦蒂诺语和意大利语与西西里
  • 闭锁小带紧密连接(Tight junction),又称闭锁小带(Zonula occludens)、封闭小带,是细胞膜共同构成一个事实上液体无法穿透的屏障的两个细胞间紧密相连的区域。它是一类只在脊椎动物中出现的
  • 促进RNA激活(RNA activation, RNAa) 是一种由小分子RNA介导的特异性基因表达上调机制,是李龙承等于2006年首先在人细胞中发现并命名的。随后,其他研究小组也报道了相似的现象,证明了
  • 胡服“胡”是中国古代汉族对周边其他民族的统称。广义的“胡服”可指任何异族服装。狭义的胡服,因各个时代不同,其具体的涵义、特征各不相同。
  • 阿龙·切哈诺沃阿龙·切哈诺沃(希伯来文:אהרן צ'חנובר‎,1947年10月1日-),中文名齐揩华,以色列生物学家。由于发现了泛素调解的蛋白质降解,与阿夫拉姆·赫什科、欧文·罗斯一起获得了200
  • 王 颖王颖(1935年2月24日-),生于河南潢川,籍贯辽宁康平,中国海岸海洋地貌与沉积学家,南京大学教授、南京大学地学院院长。1935年出生于河南潢川。籍贯辽宁康平。1956年毕业于南京大学。1
  • 欲界欲界(梵语:कामधातु,kāma-dhātu),亦称欲地(kāma-bhūmi),佛教术语,世界的三界之一。欲界是由欲乐(kāma)与界二者形成的复合字,此界是由物质主导,以追求欲乐为主,故而得名。欲界