代数几何

✍ dations ◷ 2025-04-04 05:25:29 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中的单位球面被定义为满足方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。一个 "倾斜的" 圆周在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中可以被定义为同时满足如下两个方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。现在我们开始进入稍微抽象的领域。考虑一个数域 k {displaystyle k} ,在古典代数几何中这个域通常是复数域 C {displaystyle mathbf {C} } ,现在我们把它推广为一个代数封闭的数域。我们定义数域 k {displaystyle k} 上的 n {displaystyle n} 维仿射空间 A k n {displaystyle {mathbb {A} }_{k}^{n}} ,简单讲来,它只是一些点的集合,以下为方便我们简记为 A n {displaystyle {mathbb {A} }^{n}} 。如果函数可以被写为多项式,即如果有多项式 p {displaystyle p} 在对 A n {displaystyle {mathbb {A} }^{n}} 上的每个点都有n {displaystyle n} 维仿射空间的正则函数正是数域 k {displaystyle k} 上 n {displaystyle n} 个变量的多项式。我们将 A n {displaystyle {mathbb {A} }^{n}} 上的正则函数记为 k [ A n ] {displaystyle k} 。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:

相关

  • 传染性海绵状脑病传染性海绵状脑病(英语:transmissible spongiform encephalopathies, TSEs),又译为传播性海绵样脑症。而其它常见名称为普利昂疾病或朊毒体疾病(Prion diseases)。是一种会影响人
  • 天长市天长市是位于中国安徽省东部的县级市,1993年3月29日起由地级滁州市代管。东临高邮湖,因伸入江苏苏中腹地,故而有“安徽东大门”之称,也是安徽省距离长江口最近的城市。位于江淮
  • 本体论 (计算机)在计算机科学与信息科学领域,理论上,本体是指一种“形式化的,对于共享概念体系的明确而又详细的说明”。本体提供的是一种共享词表,也就是特定领域之中那些存在着的对象类型或概
  • 等离子体等离子体物理学是研究等离子体性质的物理学分支。等离子体是物质的第四态,是由电子、离子等带电粒子及中性粒子组成的混合气体,宏观上表现出准中性,即正负离子的数目基本相等,整
  • 支架蛋白质在生物学中,“支架蛋白质”(英文:Scaffold protein)是许多关键信号通路的关键调节因子。尽管目前对支架的功能没有严格的定义,但已知它们会与信号传导途径的多个成员相互作用或结
  • 伞护种伞护种(英语:umbrella species)是保护生物学中的一个概念,指那些生存环境需求能够涵盖许多其他物种生存环境需求的物种。布鲁斯·威尔科克斯(Bruce A. Wilcox)最早于1984年提出这
  • 杜尔贝科罗纳托·杜尔贝科(意大利语:Renato Dulbecco,1914年2月22日-2012年2月19日),意大利出生的病毒学家,二次世界大战后与好友神经生物学家丽塔·列维-蒙塔尔奇尼一起移居美国。由于发现
  • 恩斯特·比尤特勒恩斯特·比尤特勒(德语:Ernest Beutler,1928年9月30日-2008年10月5日),出生于德国柏林的美国病理学家与血液学家,也是教科书《威廉斯血液学》(Williams Hematology)作者。比尤特勒在1
  • 首位度首位城市(英语:primate city)是指在一个国家或地区的城市等级体系中,规模最大且不成比例地大于其他城市的城市。这一概念于1939年由地理学家马克·杰佛森(M.Jefferson)在《城市首位
  • 海因里希·布吕宁海因里希·阿洛伊修斯·马利亚·以利沙伯·布吕宁(德语:Heinrich Aloysius Maria Elisabeth Brüning, 1885年11月26日-1970年3月30日),为德国的政治家。在魏玛共和国末期的1930