首页 >
代数几何
✍ dations ◷ 2025-01-23 07:51:37 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中的单位球面被定义为满足方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。一个 "倾斜的" 圆周在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中可以被定义为同时满足如下两个方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。现在我们开始进入稍微抽象的领域。考虑一个数域
k
{displaystyle k}
,在古典代数几何中这个域通常是复数域
C
{displaystyle mathbf {C} }
,现在我们把它推广为一个代数封闭的数域。我们定义数域
k
{displaystyle k}
上的
n
{displaystyle n}
维仿射空间
A
k
n
{displaystyle {mathbb {A} }_{k}^{n}}
,简单讲来,它只是一些点的集合,以下为方便我们简记为
A
n
{displaystyle {mathbb {A} }^{n}}
。如果函数可以被写为多项式,即如果有多项式
p
{displaystyle p}
在对
A
n
{displaystyle {mathbb {A} }^{n}}
上的每个点都有n
{displaystyle n}
维仿射空间的正则函数正是数域
k
{displaystyle k}
上
n
{displaystyle n}
个变量的多项式。我们将
A
n
{displaystyle {mathbb {A} }^{n}}
上的正则函数记为
k
[
A
n
]
{displaystyle k}
。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:
相关
- 多态性多态性(英语:polymorphism)在生物学中是指一个物种的同一种群中存在两种或多种明显不同的表型。多态性必须同一时间在同一栖息地中出现。多态性是自然界中的常见现象,与生物多样
- MeSH医学主题词(Medical Subject Headings,MeSH,或译医学主题词表)是一部庞大的受控词表(或者说,元数据系统),是广泛应用于医学信息检索的一种工具。在生命科学领域旨在用于标引(英语:Subj
- Rb5s12,8,18,8,1蒸气压第一:403 kJ·mol−1 第二:2632.1 kJ·mol−1 第三:3859.4 kJ·mol−1 (主条目:铷的同位素铷是一种化学元素,符号为Rb,原子序数为37。铷是种质软、呈银白色的金
- 咪唑咪唑(英语:Imidazole),即1,3-二氮唑,是一个五元杂环芳香性有机化合物,化学式C3H4N2。它也是一个生物碱。白色或浅黄色固体结晶,可溶于水、氯仿、醇、醚,具有酸性,也具有碱性。氢原子
- 布鲁塞尔– 欧盟(灰色及浅绿色)– 比利时(灰色)布鲁塞尔(法语:Bruxelles;荷兰语:Brussel)是比利时的首都和最大的城市,也是欧洲联盟的主要行政机构所在地。布鲁塞尔市位于布鲁塞尔-首都大区
- 初级生产初级生产(英语:primary production),又称初级生产量,是指从大气中或水中的二氧化碳等无机分子合成有机化合物的一个总和量,数值越高代表合成能力就越强。以生物消费者观点直观地说
- 拉瓦锡安托万-洛朗·德·拉瓦锡(法语:Antoine-Laurent de Lavoisier,1743年8月26日-1794年5月8日),法国贵族,著名化学家、生物学家,被后世尊称为“近代化学之父”。他使化学从定性转为定量
- 高梁高粱(学名:Sorghum bicolor)又名二色高粱、蜀黍,禾本科,一年生高大草本植物,喜温、抗旱、耐涝,种子有红、白、褐各种颜色,有粘性变种。原产于非洲,用世界不同地区的高粱品种间的基因
- 原条原线(primitive streak、又可称为原条、原痕),是许多动物早期胚胎具有的构造,存在于鸟类、哺乳类、爬虫类胚胎发育的过程中。原线在许多重要的胚胎发育时期扮演中线的角色,包括胚
- 泛美运动会泛美运动会是美洲的国际综合性体育活动,每隔四年举办一次。泛美运动会源自1920年代的中美洲运动会。1932年,举行泛美运动会的倡议首度被提出,其后成立了“泛美体育组织”(西班牙