首页 >
代数几何
✍ dations ◷ 2025-05-12 19:51:43 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中的单位球面被定义为满足方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。一个 "倾斜的" 圆周在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中可以被定义为同时满足如下两个方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。现在我们开始进入稍微抽象的领域。考虑一个数域
k
{displaystyle k}
,在古典代数几何中这个域通常是复数域
C
{displaystyle mathbf {C} }
,现在我们把它推广为一个代数封闭的数域。我们定义数域
k
{displaystyle k}
上的
n
{displaystyle n}
维仿射空间
A
k
n
{displaystyle {mathbb {A} }_{k}^{n}}
,简单讲来,它只是一些点的集合,以下为方便我们简记为
A
n
{displaystyle {mathbb {A} }^{n}}
。如果函数可以被写为多项式,即如果有多项式
p
{displaystyle p}
在对
A
n
{displaystyle {mathbb {A} }^{n}}
上的每个点都有n
{displaystyle n}
维仿射空间的正则函数正是数域
k
{displaystyle k}
上
n
{displaystyle n}
个变量的多项式。我们将
A
n
{displaystyle {mathbb {A} }^{n}}
上的正则函数记为
k
[
A
n
]
{displaystyle k}
。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:
相关
- 史蒂芬·古尔德史蒂芬·杰伊·古尔德(英语:Stephen Jay Gould,1941年9月10日-2002年5月20日)是一名美国古生物学家、演化生物学家,科学史学家与科普作家,职业生涯中大多在哈佛大学担任教职,并曾在
- 骨软骨炎骨软骨炎(英语:Osteochondritis)是一种疼痛的幼年型骨软骨病(英语:Osteochondrosis),是关节内的软骨或骨骼的炎症。通常是指剥脱性骨软骨炎。“剥脱性”一词指的是“新生软骨瓣从软
- 中东中东(英语:Middle East,阿拉伯语:الشرق الأوسط,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra S
- 编辑编辑,是一种工作及职业,指为各种媒体(以出版物为主)在出版前进行的后期制作,包括文字、图像、录音、录像、多媒体生成处理,和制作审核、校对的一项工序。此工作从业人员的中文职称
- 物种起源《物种起源》(英语:On the Origin of Species)或物种源始,全称《论处在生存竞争中的物种之起源(源于自然选择或者对偏好种族的保存)》(英语:On the Origin of Species by Means of N
- 贵族贵族(拉丁语:Patricius、意大利语:Patrizio)是指古罗马帝国享有一些特权的古罗马公民。他们属于特权阶级,地位高于平民,是古罗马社会中最富有的成员。在前400年前,他们曾垄断全部官
- 矿石处理选矿工程的研究内容是将低品位的矿物进行加工、提纯,主要目的是提高矿物的品位,去除矿物的杂质,例如去除煤炭中的灰分、硫、磷等杂质。选矿工程的对象主要有金属矿石、煤炭等,选
- 世界七大工程奇迹世界七大工程奇迹,简称世界工程奇迹,是指近代至现代七项最大型的工程,由美国土木工程师学会选出。它们分别是巴拿马的巴拿马运河、荷兰的北海保护工程、美国的帝国大厦及金门大
- 姆潘巴现象所谓姆潘巴现象(Mpemba effect)的多种表述:亚里士多德、弗兰西斯·培根和笛卡尔均曾以不同的方式描述过该现象,但是均未能引起广泛的注意(注意亚里士多德的描述与上述大不相同)。1
- 半径样板半径样板也称(R规、R半径规、半径规、弧度规),是一种带有一组准确内、外圆弧半径尺寸的薄板,用于检验圆弧半径的实物的量具,圆弧半径在 1 毫米 ~ 25 毫米的成组半径样板有凸形样板