代数几何

✍ dations ◷ 2024-12-22 23:41:44 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中的单位球面被定义为满足方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。一个 "倾斜的" 圆周在三维欧几里德空间 R 3 {displaystyle mathbb {R} ^{3}} 中可以被定义为同时满足如下两个方程的所有点 ( x , y , z ) {displaystyle (x,y,z)} 的集合。现在我们开始进入稍微抽象的领域。考虑一个数域 k {displaystyle k} ,在古典代数几何中这个域通常是复数域 C {displaystyle mathbf {C} } ,现在我们把它推广为一个代数封闭的数域。我们定义数域 k {displaystyle k} 上的 n {displaystyle n} 维仿射空间 A k n {displaystyle {mathbb {A} }_{k}^{n}} ,简单讲来,它只是一些点的集合,以下为方便我们简记为 A n {displaystyle {mathbb {A} }^{n}} 。如果函数可以被写为多项式,即如果有多项式 p {displaystyle p} 在对 A n {displaystyle {mathbb {A} }^{n}} 上的每个点都有n {displaystyle n} 维仿射空间的正则函数正是数域 k {displaystyle k} 上 n {displaystyle n} 个变量的多项式。我们将 A n {displaystyle {mathbb {A} }^{n}} 上的正则函数记为 k [ A n ] {displaystyle k} 。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:

相关

  • 形态学在生物学中,型态学是生命科学在生物体的组织结构与功能结构上的研究分支。包含了外观生物体的外观(形状、结构、图案、颜色),以及生物体的骨骼、器官等内部零件的功能结构。与
  • 恋烟癖恋烟癖(英语:Smoking fetishism、Capnolagnia)是一种基于吸烟(包括香烟、雪茄、烟斗、水烟或其它类似的物质)的恋物癖,恋烟癖者在看到或想像一个人吸烟时便会因此唤醒性欲。恋烟癖
  • Amantadine金刚烷胺(英语:Amantadine,常用名金刚胺)是美国FDA所批准的抗病毒和抗帕金森病药。金刚乙胺与金刚烷胺有着相似的结构和性质。根据美国疾病控制与预防中心的数据,100%的季节性H3N
  • 资讯学信息学,旧称情报学(日本人翻译),主要是指以信息为研究对象,利用计算机及其程序设计等技术为研究工具来分析问题、解决问题的学问,是以扩展人类的信息功能为主要目标的一门综合性学
  • 代谢网络代谢网络(英语:metabolic network)是完整的一决定细胞生理学和生物化学属性的整套代谢与物质过程。这些网络包含了代谢的化学反应以及指导这些反应的调整性相互作用。随着基因
  • 莫菲威廉·莫菲(William Parry Murphy,1892年2月6日-1987年10月9日)是一位美国医学家,出生于威斯康辛州。由于关于贫血治疗的研究,而在1934年与乔治·迈诺特(George Richards Minot)及乔
  • 曹植曹植(192年-232年12月27日),字子建,沛国谯县(今安徽亳州)人,曹操第四子,卞氏嫡出之第三子,三国时期曹魏的著名诗人。“才高八斗”(“八斗之才”)、“七步成诗”等词之语源。其诗歌对后世
  • 女性不孕女性不孕症是发生在女子身上的不孕症,全球有近5千万女性受此困扰,盛行率在南亚、撒哈拉以南非洲、北非及中东、中欧及东欧和中亚等地区最高。不孕的原因很多,包括(但不限)营养、
  • 互变异构互变异构是某些有机化合物的结构在两种官能团异构体间产生平衡互相转换的现象,相应的异构体则称为互变异构体。大多数互变异构都涉及氢原子或质子的转移,以及单键向双键的转变
  • 舌神经舌下神经(Hypoglossal nerve),是第十二对脑神经。该神经发源自延髓的舌下神经核,并从延髓的橄榄和锥体之间的橄榄旁沟穿出,然后经行舌下神经道(Hypoglossal canal)。从舌下神经道穿