进数
数学常数
圆周率
自然对数的底
虚数单位
无穷大
进数(英语:p-adic number),是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域 到实数域 、复数域 的数系拓展不同,其具体在于所定义的“距离”概念。 进数的距离概念建立在整数的整除性质上。给定素数 ,若两个数之差被 的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使 进数理论成为了数论研究中的有力工具。
进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今 进数的影响已远不止于此。例如可以在 进数上建立 进数分析,将数论和分析的工具结合起来,安德鲁·怀尔斯对费马大定理的证明中就用到了 进数理论。此外, 进数在量子物理学、认知科学、计算机科学等领域都有应用。
数系是人类将自然中的数量关系抽象化得到的代数系统。最早建立的数系是带有加法与乘法的自然数
,其后引入了负数、分数的概念,形成了有理数 :32。 是“最小的”能够包容四则运算的代数系统,这样的系统在近世代数中称为域。数系的拓展中,自然数系到有理数系的拓展是基于代数运算的需求,而有理数系到实数系的拓展则是拓扑学的需要。这里的拓扑指的是为代数体系赋予“形状”,定义“远近”、“长短”等概念,是建立几何和分析结构的基础。一个常见的拓扑学方法是引入“距离”的概念,正式称呼为度量。最直观的定义是将两个有理数的“距离”(度量)
定义为两者之差的绝对值:两个有理数之间的度量是一个非负的有理数。也即是说度量
是一个从有理数域映射到非负有理数集合的二元函数: 。其中 的大小关系则是有理数域上定义的全序。这个度量基于欧几里得几何,叫做欧几里得度量或绝对值度量。在
上装备了度量后,可以讨论极限的概念。极限描述了一个数列在下标趋于无穷时的趋势,是分析学的基础。如果一个有理数列在下标趋于无穷时,数列的项与某个数 的距离可以小于任意给定的正有理数,就称 为此数列的极限。拥有极限的数列的项在下标趋于无穷时相互无限“靠近”。但反过来,这样的数列不一定拥有有理数极限。比如说以下数列:这说明有理数在表示长度和距离的时候是不完备的,存在着无法用有理数表达的长度。为此需要对有理数进行扩展,称为完备化。
将
完备化的拓扑方法由格奥尔格·康托提出。康托的方法依赖于现称为柯西数列的概念。柯西数列是一种可以用任意“小”的“圆盘”覆盖从某项起所有项的无穷数列。某个有理数数列 是柯西数列,当且仅当对任意有理数 ,都存在自然数 ,使得对任意 ,都有 。康托承认每个这样的有理数数列都收敛到某个极限,将实数定义为某个柯西数列的极限。显然,对于所有有理数,都能找到一个以它为极限的柯西数列,比如常数数列。如果当两个柯西数列 和 的差: 收敛于 ,就称这两个数列等价,这样就可以在所有的柯西数列中建立等价关系。而康托将所有的等价类的集合定义为实数集 。四则运算、绝对值度量和序关系“ ”都可以从有理数域自然诱导到 上。最重要的是,可以证明,所有 中元素构成的柯西数列都收敛到 中。这说明 是一个有序完备数域。实数
作为 的完备化是建立在绝对值度量上的,这种度量与日常现实中的欧几里德式的“距离”概念吻合,符合直观经验。实数也因此成为描述现实世界的有力数学工具。 进数与实数的不同在于,它是将绝对值度量改为另一种非直观的度量对有理数进行完备化后得到的完备数域:8:50-51。在有理数
上引入绝对值度量,与此对应的柯西序列的等价类构成了完备数域 。 进数则是在 上引入不同的度量后进行完备化得到的完备数域。给定素数
。对任意 ,将其写为分数形式 ,其中 和 是整数, 不等于0。根据算术基本定理,每个整数都可以唯一分解为素因数的乘积。考察 在 和 的素因数分解中的次数 和 ,定义 进赋值:90:1-2:同时约定
。例如 , ,则在此基础上,可以定义度量映射以及其对应诱导的范数:59:2:90:
例如
可以验证映射
满足度量所需的一切性质:59。因此,用与构造实数相同的手段,可以构造一个完备有序数域,记作 :90:60-61。由奥斯特洛夫斯基定理,
的所有绝对值赋值或者等价于绝对值,或为平凡赋值,或等价于某素数 的 进赋值。从而 (关于某赋值)的完备化也只有这些:46:3。用代数的方法,首先定义
进整数环 ,然后构造其分式域,也可以得到 进数域:92。首先考虑由整数模
的同余类构成的环: 。 与 之间存在自然的环同态:考察逆向链:
定义
为其逆向极限: :56。也就是说,每个 进整数 被定义为以下的序列:其中
相关
- 马萨诸塞州总医院麻省总医院(英文:Massachusetts General Hospital;缩写:Mass General或MGH)为一所坐落于波士顿的综合型医院。其为美国新英格兰地区最古老且最具规模的医院,并是哈佛大学最大型的
- 卡勒保罗·卡勒(Paul Karrer,1889年4月21日俄罗斯莫斯科 - 1971年6月18日),瑞士有机化学家,因在维生素上的研究,,他和沃尔特·霍沃思在1937年共同荣获诺贝尔化学奖。1901年:范托夫 | 190
- 哈布斯堡家族哈布斯堡王朝(德语:Habsburg),也称哈普斯堡家族(Hapsburg),是欧洲历史上最为显赫、统治地域最广的王室之一。其家族成员曾出任罗马人民的国王和神圣罗马帝国皇帝(1273年—1291年,1298
- 安田好弘安田好弘(1947年12月4日-),日本律师,兵库县人,著名的公设辩护人,其事迹在2012年被改拍成电影。
- 巫女巫女(みこ、ふじょ,又称为“神子(みこ)”)是日本神社中辅助神职的职务,且不受《男女雇用机会均等法(日语:雇用の分野における男女の均等な機会及び待遇の確保等に関する法律)》限制的
- 女暴君女暴君(英语:Lady Sovereign,本名Louise Amanda Harman,1985年12月19日-),英国饶舌歌手、作曲家及作词人,生于英国温布利,小时候家境贫穷,于贫民窟成长。 身材矮小,只得五尺一寸(约155公
- 塞里林格阿姆帕尔莱塞里林格阿姆帕尔莱(Serilingampalle),是印度安得拉邦Rangareddi县的一个城镇。总人口150525(2001年)。该地2001年总人口150525人,其中男性75462人,女性75063人;0—6岁人口17196人,其
- Laforet原宿Laforet原宿(日语:ラフォーレ原宿/ラフォーレはらじゅく,La Foret Harajuku)是东京表参道(涩谷区神宫前一丁目)的购物中心、时装大楼。由森大厦的相关企业森大厦流通系统株式会社(森
- 阿根廷人列表阿根廷人按职业分类,可以从以下各列表中查询。
- 加泰罗尼亚议会信任供给 (9)在野党 (61)加泰罗尼亚议会(加泰罗尼亚语:Parlament de Catalunya)为西班牙加泰罗尼亚自治区的一院制立法机构。每四年选举出新一届135名加泰罗尼亚议会议员。议会选举时共划分4个选区,每个省作为一个选区。议会大楼(加泰罗尼亚语:Palau del Parlament de Catalunya)位于巴塞罗那的城堡公园内。2017年10月27日,因为启动《西班牙宪法》第155条而被西班牙首相强行解散,2017年12月21日重新进行选举,仍由赞成独立的政党占多数。加泰罗尼亚