高斯-马尔可夫定理

✍ dations ◷ 2025-06-29 16:11:42 #数学定理,统计学

在统计学中,高斯-马尔可夫定理(Gauss-Markov Theorem)陈述的是:在线性回归模型中,如果误差满足零均值、同方差且互不相关,则回归系数的最佳线性无偏估计(BLUE, Best Linear unbiased estimator)就是普通最小二乘法估计。

对于简单(一元)线性回归模型,

其中 β 0 {\displaystyle \beta _{0}} β 1 {\displaystyle \beta _{1}} 是非随机但不能观测到的参数, x i {\displaystyle x_{i}} 是非随机且可观测到的一般变量, ε i {\displaystyle \varepsilon _{i}} 是不可观测的随机变量,或称为随机误差或噪音,因此 y i {\displaystyle y_{i}} 是可观测的随机变量。

高斯-马尔可夫定理的假设条件是:

则对 β 0 {\displaystyle \beta _{0}} β 1 {\displaystyle \beta _{1}} 的最佳线性无偏估计为,

对于多元线性回归模型,

使用矩阵形式,线性回归模型可简化记为 Y = X β + ε {\displaystyle \mathbf {Y} =\mathbf {X} {\boldsymbol {\beta }}+{\boldsymbol {\varepsilon }}} ,其中采用了以下记号:

Y = ( y 1 , y 2 , , y n ) T {\displaystyle \mathbf {Y} =(y_{1},y_{2},\dots ,y_{n})^{T}} (观测值向量,Vector of Responses),

X = ( x i j ) = {\displaystyle \mathbf {X} =(x_{ij})={\begin{bmatrix}1&x_{11}&x_{12}&\cdots &x_{1p}\\1&x_{21}&x_{22}&\cdots &x_{2p}\\\vdots &\vdots &\vdots &\ddots &\vdots \\1&x_{n1}&x_{n2}&\cdots &x_{np}\end{bmatrix}}} (设计矩阵,Design Matrix),

β = ( β 0 , β 1 , , β p ) T {\displaystyle {\boldsymbol {\beta }}=(\beta _{0},\beta _{1},\dots ,\beta _{p})^{T}} (参数向量,Vector of Parameters),

ε = ( ε 1 , ε 2 , , ε n ) T {\displaystyle {\boldsymbol {\varepsilon }}=(\varepsilon _{1},\varepsilon _{2},\dots ,\varepsilon _{n})^{T}} (随机误差向量,Vectors of Error)。

高斯-马尔可夫定理的假设条件是:

则对 β {\displaystyle {\boldsymbol {\beta }}} 的最佳线性无偏估计为

首先,注意的是这里数据是 Y {\displaystyle \mathbf {Y} } 而非 X {\displaystyle \mathbf {X} } ,我们希望找到 β {\displaystyle {\boldsymbol {\beta }}} 对于 Y {\displaystyle \mathbf {Y} } 的线性估计量,记作

其中 β ^ {\displaystyle {\hat {\boldsymbol {\beta }}}} M {\displaystyle \mathbf {M} } N {\displaystyle \mathbf {N} } Y {\displaystyle \mathbf {Y} } 分别是 ( p + 1 ) × 1 {\displaystyle (p+1)\times 1} ( p + 1 ) × 1 {\displaystyle (p+1)\times 1} ( p + 1 ) × n {\displaystyle (p+1)\times n} n × 1 {\displaystyle n\times 1} 矩阵。

根据零均值假设所得,

其次,我们同时限制寻找的估计量为无偏的估计量,即要求 E ( β ^ ) = β {\displaystyle {\rm {E}}\left({\hat {\boldsymbol {\beta }}}\right)={\boldsymbol {\beta }}} ,因此有

相关

  • 水银温度计水银温度计由玻璃制成包含水银球及水银柱的温度计。末端水银球随测量位有不同形状和大小,如口表呈细长型、肛表则为短而圆或用颜色加以区别。体温计之水银受热膨胀。水银柱升
  • 理查德一世理查一世(英语:Richard I;1157年9月8日-1199年4月6日),中世纪的英格兰王国的国王,因勇猛善战而有“狮心王”称号。理查一世身为天主教教徒,曾加入教廷发起的十字军圣战,为第三次十字
  • 耀斑耀斑是在太阳的盘面或边缘观测到的突发闪光现象,它会释放出高达6 × 1025焦耳的巨大能量(大约是太阳每秒钟释放总能量的六倍,或相当于160,000,000,000百万吨TNT,超过舒梅克-李维
  • 罗斯福路罗斯福路为台北市南区重要的交通干道,属于省道台9线之一部分,路名是纪念美国前总统小罗斯福,英文路名为“Roosevelt Road”,与过去的麦帅公路为台北唯二以外国人命名的道路。其
  • 立体排斥立体效应,理论有机化学的重要概念之一。简单来说,立体效应是由于分子本身各个官能团客观上占据了一定的空间大小,由此产生的诸多影响,称为立体效应。官能团之间的相互挤压使得基
  • 电影列表台湾电影列表为历年台湾(或者1949年后的中华民国)制作并上映的台湾电影(包含与他国合拍的电影)列表说明田朝明、田孟淑
  • 对日裔美国人的囚禁日裔美国人囚禁(英文:Internment of Japanese Americans)是珍珠港事件发生以后,自1942年起,美国政府对约11万居住在美国太平洋沿岸的日裔美国人的扣留,转移和囚禁。1942年2月19日,
  • 科尔比学院皇室蓝科尔比学院(英文:Colby College)是一所私立文理学院,位于缅因州沃特维尔的五月花山上。学院建立于1813年,是美国历史第12长的文理学院。建立初期最初为男子学院,自1873年
  • 抚顺市 (中华人民共和国直辖市)抚顺直辖市,中华人民共和国已撤消的直辖市。1949年时,中国大陆共设有12个直辖市,分别为:南京、上海、武汉(今武汉三镇)、鞍山、抚顺、沈阳、本溪、西安、北平(今北京)、天津、重庆、
  • 塞语塞语(Saka、Sakan),又称东部塞语,是一种曾在塔里木盆地于阗王国与图木舒克使用的塞族方言,属东伊朗语。在其下又分成两种方言,在于阗使用的,称为于阗语(Khotanese),于阗塞语和和阗语等