停机问题

✍ dations ◷ 2025-11-01 20:36:37 #数理逻辑,计算理论,递归论,数学问题

停机问题(英语:halting problem)是逻辑数学中可计算性理论的一个问题。通俗地说,停机问题就是判断任意一个程序是否能在有限的时间之内结束运行的问题。该问题等价于如下的判定问题:是否存在一个程序P,对于任意输入的程序w,能够判断w会在有限时间内结束或者死循环。

艾伦·图灵在1936年用对角论证法证明了,不存在解决停机问题的通用算法。这个证明的关键在于对计算机和程序的数学定义,这被称为图灵机。停机问题在图灵机上是不可判定问题。这是最早提出的决定性问题之一。

用数学语言描述,则其本质问题为: 给定一个图灵机T,和一个任意语言集合S,是否T会最终停机于每一个 s S {\displaystyle s\in S} 。其意义相同于可确定语言。显然任意有限 S 是可判定性的,可数的(countable)S 也是可停机的。

停机问题包含了自我指涉,本质是一阶逻辑的不完备性,类似的命题有理发师悖论、全能悖论等。

假设停机问题有解,即:存在过程H(P, I)可以判断对于程序P在输入I的情况下是否可停机。假设P在输入I时可停机,H输出“停机”,反之输出“死循环”,即可导出矛盾:

显然,程序本身也是一种数据,因此它可以作为输入(例如Pascal的编译器本身就可以用Pascal所写成,所以程序在自己身上运行自己也是合理的),故H应该可以判定当将P作为P的输入时,P是否会停机。然后我们定义一个过程U(P),其流程如下:

伪代码及其注释表示如下:

int H(procedure,Input); // 这里的H函数有两种返回值,死循环(1) 或 停机(0)int U(P){    if (H(P,P) == 1){ // 如果H死循环        return 0; // 此时会停机    }else{ // 否則        while(1){} // 此时会死循环,而這是個空迴圈    }}

上面把H(P, P)包装在U(P)内,也就是用U()来模拟H()。H()的输出可能出现两种状况:

因此,H不是总能给出正确答案,故前述的假设不成立,不存在解决停机问题的方法。

理发师悖论:村子里有个理发师,这个理发师有条原则是,对于村子里所有人,当且仅当这个人不自己刮胡子,理发师就给这个人刮胡子。如果这个人自己刮胡子,理发师就不给这个人刮胡子。无法回答的问题是,理发师给自己刮胡子么?

停机测试悖论:计算机里面有个测试程序,这个测试程序的原则是,对于计算机里所有程序,当且仅当这个程序不递归调用自己(输出停机),测试程序就调用它(对应不停机)。如果这个程序递归调用自己(对应不停机),测试程序就不调用它(对应停机)。无法回答的问题是,测试程序递归调用自己么?

相关

  • 公共卫生公共卫生是通过组织社区资源,为公众提供疾病预防和健康促进的一门管理学,它使用预防医学、健康促进、环境卫生、社会科学等技术和手段。公共卫生体系由国际公共卫生组织、国家
  • 弗罗堡弗罗堡(德语:Frohburg)是德国萨克森州的一个市镇。总面积108.06平方公里,总人口10732人,其中男性5407人,女性5325人(2011年12月31日),人口密度99人/平方公里。
  • 鳞癌鳞状细胞癌(Squamous-cell carcinoma, SCC, SqCC),有时也被称之为表皮样癌(epidermoid carcinoma)或鳞状细胞上皮瘤(squamous cell epithelioma),是一类上皮组织细胞、鳞状细胞产生
  • 南澳州南澳大利亚(英语:South Australia,缩写为SA),简称南澳,位于澳大利亚中南部,与澳大利亚大陆的其余四州及北领地接壤,是澳大利亚联邦的一州,其下划分为69个地方政府区域。南澳大利亚南
  • 菲尼克斯光点凤凰城光点(英语:Phoenix Lights),指1997年3月13日发生在美国亚利桑那州凤凰城的不明飞行物事件。有7000多人发现夜空中有呈V字型排列的数个光点缓缓飞行,为近代少有的集体目击不
  • MIOMIO可以是下列的意思:
  • 静坐罢工静坐罢工是一种劳工罢工,有组织的劳工团体表现公民不服从的方式之一。这类行动通常于工人受雇的工厂或其他集体工作地点进行,方式为未经授权甚至非法地在工作场所静坐(英语:Occu
  • 头癣头癣(外语favus, tinea capitis, ringworm of the scalp)是皮肤细菌疾病,由真菌引起,有可能引发其它疾病。三种主要的真菌是:小孢癣菌、表皮癣菌和毛癣菌属。头癣可能出现于各部
  • 有机铊化学有机铊化学是研究含碳-铊键化合物的化学分支。由于它在自然界含量稀少、分布分散且毒性特别大,故没有同族的硼和铝研究的广泛而深入。在有铊化合物中,铊可以以+1或+3氧化态的
  • 黄荣 (1911年)黄荣(1911年4月-2012年9月6日),原名黄树荣,男,壮族,广西巴马人,中华人民共和国政治人物。早年参加百色起义,并任红七军军长张云逸的警卫员。后随部转移中央苏区,并参加长征,期间担任红