首页 >
开普勒定律
✍ dations ◷ 2025-04-25 00:55:59 #开普勒定律
开普勒定律是由德国天文、数学家约翰尼斯·开普勒所发现、关于行星运动的定律。他于1609年在他出版的《新天文学》科学杂志上发表了关于行星运动的两条定律,又于1618年,发现了第三条定律。开普勒幸运地得到了著名丹麦天文学家第谷·布拉赫所观察与收集、且非常精确的天文资料。大约于1605年,根据布拉赫的行星位置资料,开普勒发现行星的移动遵守着三条相当简单的定律。同年年底,他撰写完成了发表文稿。但是,直到1609年,才在《新天文学》科学杂志发表,这是因为布拉赫的观察数据属于他的继承人,不能随便让别人使用,因此产生的一些法律纠纷造成了延迟。在天文学与物理学上、开普勒的定律给予亚里士多德派与托勒密派极大的挑战。他主张地球是不断地移动的;行星轨道不是圆形(epicycle)的,而是椭圆形的;行星公转的速度不等恒。这些论点,大大地动摇了当时的天文学与物理学。经过几乎一个世纪的研究,物理学家终于能够运用物理理论解释原理。牛顿应用他的第二定律和万有引力定律,在数学上严格地证明了开普勒定律,也让人了解了其中的物理意义。开普勒的三条行星运动定律改变了整个天文学,彻底摧毁了托勒密复杂的宇宙体系,完善并简化了哥白尼的日心说。开普勒的第一定律,也称为椭圆定律、轨道定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律,也称为等面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。用公式表示为开普勒第三定律,也称为周期定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。这是艾萨克·牛顿的万有引力定律的一个重要基础。用公式表示为这里,
a
{displaystyle a}
是行星公转轨道半长轴,
τ
{displaystyle tau }
是行星公转周期,
K
{displaystyle K}
是常数。开普勒定律描述的是行星围绕太阳的运动,牛顿定律可以更广义地描述几个粒子因万有引力相互吸引而形成的运动。假设只有两个粒子,其中一个粒子超轻于另外一个粒子,则轻的粒子会绕着重的粒子运动,就好似行星根据开普勒定律绕著太阳运动。另外,牛顿定律还可计算出关于其它方面的解答,行星轨道可以呈抛物线运动或双曲线运动。这是开普勒定律所无法预测到的结果。在一个粒子并不超轻于另外一个粒子的状况下,依照广义二体问题的解答,每一个粒子会绕着它们的共同质心运动。这也是开普勒定律无法预测到的。开普勒定律使用几何语言将行星的坐标及时间跟轨道参数相连结。牛顿第二定律是一个微分方程。开普勒定律的推导涉及一些解析微分方程的技巧。在推导开普勒第一定律之前,必须先推导出开普勒第二定律,因为开普勒第一定律需要用到开普勒第二定律里的一些计算结果。牛顿万有引力定律表明,任意两个粒子由通过连线方向的力相互吸引。该引力的的大小与它们的质量乘积成正比,与它们距离的平方成反比。由于太阳超重于行星,可以假设太阳是固定的。用方程表示,这里,
F
{displaystyle {boldsymbol {F}}}
是太阳作用于行星的万有引力,
m
{displaystyle m}
是行星的质量,
M
{displaystyle M}
是太阳的质量,
r
{displaystyle {boldsymbol {r}}}
是行星相对于太阳的位移矢量,
r
^
{displaystyle {hat {boldsymbol {r}}}}
是
r
{displaystyle {boldsymbol {r}}}
的单位矢量。牛顿第二定律表明,物体受力后所产生的加速度
r
¨
{displaystyle {ddot {boldsymbol {r}}}}
,和其所受的合力
F
{displaystyle {boldsymbol {F}}}
成正比,和其质量
m
{displaystyle m}
成反比,以方程表示,合并这两个方程,思考位置矢量
r
=
r
r
^
{displaystyle {boldsymbol {r}}=r{hat {boldsymbol {r}}}}
,对于时间
t
{displaystyle t}
微分一次可得到速度矢量,再微分一次则可得到加速度矢量:在这里,用到了单位矢量微分方程:合并方程 (1) 与 (2) ,可以得到矢量运动方程:取各个分量,可以得到两个常微分方程,一个是关于径向加速度,另一个是关于切向加速度:导引开普勒第二定律只需切向加速度方程。试想行星的角动量
ℓ
=
m
r
2
θ
˙
{displaystyle ell =mr^{2}{dot {theta }}}
。由于行星的质量是常数,角动量对于时间的导数为角动量
ℓ
{displaystyle ell }
也是一个运动常数,即使距离
r
{displaystyle r}
与角速度
θ
˙
{displaystyle {dot {theta }}}
都可能会随时间变化。从时间
t
1
{displaystyle t_{1}}
到时间
t
2
{displaystyle t_{2}}
扫过的区域
Δ
A
{displaystyle Delta A}
,行星太阳连线扫过的区域面积相依于间隔时间
t
2
−
t
1
{displaystyle t_{2}-t_{1}}
。所以,开普勒第二定律是正确的。设定
u
=
1
r
{displaystyle u={frac {1}{r}}}
。这样,角速度是对时间微分和对角度微分有如下关系:根据上述关系,径向距离
r
=
1
u
{displaystyle r={frac {1}{u}}}
对时间的导数为:再求一次导数:代入径向运动方程 (3) ,
r
¨
−
r
θ
˙
2
=
−
G
M
r
2
{displaystyle {ddot {r}}-r{dot {theta }}^{2}=-{frac {GM}{r^{2}}}}
,将此方程除以
−
ℓ
2
u
2
m
2
{displaystyle -{frac {ell ^{2}u^{2}}{m^{2}}}}
,则可得到一个简单的常系数非齐次线性全微分方程来描述行星轨道:为了解这个微分方程,先列出一个特解再求解剩余的常系数齐次线性全微分方程,它的解为这里,
C
{displaystyle C}
与
θ
0
{displaystyle theta _{0}}
是常数。合并特解和与齐次方程解,可以得到通解选择坐标轴,让
θ
0
=
0
{displaystyle theta _{0}=0}
。代回
u
=
1
r
{displaystyle u={frac {1}{r}}}
,其中,
e
=
C
ℓ
2
/
G
M
m
2
{displaystyle e=Cell ^{2}/GMm^{2}}
是离心率。这是圆锥曲线的极坐标方程,坐标系的原点是圆锥曲线的焦点之一。假若
0
<
e
<
1
{displaystyle 0<e<1}
,则
r
{displaystyle r}
所描述的是椭圆轨道。这证明了开普勒第一定律。在建立牛顿万有引力定律的概念与数学架构上,开普勒第三定律是牛顿依据的重要线索之一。假若接受牛顿运动定律。试想一个虚拟行星环绕着太阳公转,行星的移动轨道恰巧呈圆形,轨道半径为
r
{displaystyle r}
。那么,太阳作用于行星的万有引力为
F
=
m
v
2
r
{displaystyle F={frac {mv^{2}}{r}}}
。行星移动速度为
v
=
2
π
r
τ
{displaystyle v={frac {2pi r}{tau }}}
。依照开普勒第三定律,这速度
v
{displaystyle v}
与半径的平方根
r
{displaystyle {sqrt {r}}}
成反比。所以,万有引力
F
∝
1
r
2
{displaystyle Fpropto {frac {1}{r^{2}}}}
。猜想这大概是牛顿发现万有引力定律的思路,但这个猜想无法被证实,因为在他的计算本里,并没有找到任何关于这方面的证据。开普勒第一定律阐明,行星环绕太阳的轨道是椭圆形的。椭圆的面积是
π
a
b
{displaystyle pi ab}
;这里,
a
{displaystyle a}
与
b
{displaystyle b}
分别为椭圆的半长轴与半短轴。在开普勒第二定律推导里,行星-太阳连线扫过区域速度
d
A
d
t
{displaystyle {frac {mathrm {d} A}{mathrm {d} t}}}
为所以,行星公转周期
τ
{displaystyle tau }
为关于此行星环绕太阳,椭圆的半长轴
a
{displaystyle a}
,半短轴
b
{displaystyle b}
与近拱距
r
A
{displaystyle r_{A}}
(近拱点 A 与引力中心之间的距离),远拱距
r
B
{displaystyle r_{B}}
(远拱点 B 与引力中心之间的距离)的关系分别为如果想要知道半长轴与半短轴,必须先求得近拱距与远拱距。依据能量守恒定律,在近拱点 A 与远拱点 B,径向速度都等于零:所以,稍为加以编排,可以得到
r
{displaystyle r}
的一元二次方程:其两个根分别为椭圆轨道的近拱距
r
A
{displaystyle r_{A}}
与远拱距
r
B
{displaystyle r_{B}}
。代入方程 (6) 与 (7) ,代入方程 (5) ,周期的方程为■
相关
- 主动运输主动运输(active transport)是一种物质逆电化学梯度的跨细胞膜的运动。在细胞中,这一过程通常伴随着高浓度的分子积累,如金属离子、葡萄糖和氨基酸。相对于被动运输,主动运输的进
- 弯曲病毒科葱属X病毒属 Allexivirus 香石竹潜隐病毒属 Carlavirus 发状病毒属 Capillovirus 凹陷病毒属 Foveavirus 柑橘病毒属 Mandarivirus 马铃薯X病毒属 Potexvirus 纤毛病毒
- 平均细胞血红蛋白浓度平均细胞血红蛋白浓度(mean corpuscular hemoglobin concentration、MCHC)是测量定量血红细胞中的血红蛋白浓度。它是血常规检测中的一项。 该指标的成年人正常范围大约在320-
- 电生理学在神经科学,电生理学是一门研究生物细胞或组织的电学特性的科学,主要研究神经元的电学特性,尤其是动作电位包括细胞膜电势变化与跨膜电流的调节。它涉及在多种尺度上从单个离子
- 人工生命体人造生命,又称合成生命,是近期出现的生物技术术语,指利用生物技术干预、改变遗传密码从而产生新的生命个体的研究。创造人造生命是于合成生物学或探索生命的起源领域工作的科学
- 氰基丙烯酸酯万能胶,又称快干胶、三秒胶、瞬间胶、502胶,所含作为组合剂的成分为氰基丙烯酸酯(Cyanoacrylate)。氰基丙烯酸酯是一系列物质的合称,譬如 2-氰基丙烯酸甲酯(Methyl-2-cyanoacrylat
- 贝里学院贝里学院(Berry College)是位于美国乔治亚州弗洛伊德县贝里山(Mount Berry)地区的一所私立四年制文理学院,距离县治罗马不远。它于1902年由美国教育家玛莎·贝里(Martha Berry)创立
- 二级核酸二级结构(英语:Nucleic acid secondary structure)是单个核酸聚合物内或两个聚合物之间的碱基对相互作用。它可以被表示为在核酸分子中配对的碱基的一个列表。 生物DNA的和
- 键角分子结构,或称分子立体结构、分子形状、分子几何、分子几何构型,建立在光谱学数据之上,用以描述分子中原子的三维排列方式。分子结构在很大程度上影响了化学物质的反应性、极性
- 侯朝焕侯朝焕(1936年9月29日-),中国信号处理和声学专家。生于四川自贡。1958年毕业于北京大学物理系。中国科学院声学研究所研究员。1995年当选为中国科学院院士。