首页 >
几何级数
✍ dations ◷ 2025-09-02 09:50:19 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于
2
{displaystyle 2}
。如果一个等比数列的首项记作
a
{displaystyle a}
,公比记作
r
{displaystyle r}
,那么该等比数列第
n
{displaystyle n}
项
a
n
{displaystyle a_{n}}
的一般项为:换句话说,任意一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
都可以写成在一个等比数列中,给定任意两相连项
a
n
+
1
{displaystyle a_{n+1}}
和
a
n
{displaystyle a_{n}}
(其中
a
n
≠
0
{displaystyle a_{n}neq 0}
),可知公比给定任意两项
a
m
{displaystyle a_{m}}
和
a
n
{displaystyle a_{n}}
,则有公比这里注意,若
m
−
n
{displaystyle m-n}
是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说,
a
1
×
a
3
=
a
2
2
{displaystyle a_{1}times a_{3}={a_{2}}^{2}}
。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数
m
,
n
,
p
,
q
{displaystyle m,n,p,q}
,使得
m
+
n
=
p
+
q
{displaystyle m+n=p+q}
,那么则有:证明如下:由此可将上面的性质一般化成:其中
k
{displaystyle k}
是一个小于
n
{displaystyle n}
的正整数。给定一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比
r
=
q
{displaystyle r=q}
,首项
a
=
p
q
{displaystyle a=pq}
。一个等比数列的首
n
{displaystyle n}
项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作
S
n
{displaystyle S_{n}}
。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的和是
1
+
2
+
4
+
8
=
15
{displaystyle 1+2+4+8=15}
。等比数列求和的公式如下:其中
r
≠
1
{displaystyle rneq 1}
。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当
r
≠
1
{displaystyle rneq 1}
时,整理后得证。当
r
=
1
{displaystyle r=1}
时,可以发现:综上所述,等比数列的求和公式为:当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的积是
1
×
2
×
4
×
8
=
64
{displaystyle 1times 2times 4times 8=64}
。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。
相关
- 头孢泊肟酯头孢泊肟酯(英语:Cefpodoxime Proxetil),是一种第三代头孢菌素。 它对绝大多数的革兰氏阳性和革兰氏阳阴性的生物都有作用,除了绿脓杆菌、肠球菌和脆弱拟杆菌(英语:Bacteroides fra
- LOINC观测指标标识符逻辑命名与编码系统(Logical Observation Identifiers Names and Codes,LOINC) 是一部数据库和通用标准,用于标识检验医学及临床观测指标。LOINC数据库旨在促进临
- 机鼻鼻锥,亦作头锥或前锥,用来指火箭、导弹或飞机等各种飞行器前端的部分。鼻锥的存在是为了减低空气动力学上因为运动而产生的湍流,减低飞行器在飞行时受到的阻力。鼻锥的设计亦可
- 双性双性人(英语:Intersex),又称间性人,俗称“阴阳人”,根据联合国人权事务高级专员办事处的报告,性别特征包括染色体、性腺、性激素或生殖器的变异导致“不符合男性或女性身体的典型二
- 质子泵抑制剂质子泵抑制剂(英语:Proton-pump inhibitor、缩写为PPI)或称氢离子帮浦阻断剂,是一种抑制氢离子泵的药物,这种药物对于减少胃酸分泌的作用是显著也长效的,可以说是现今减少胃酸分泌
- 工具论《工具论》是亚里士多德的后人(即逍遥学派)对他的六篇关于逻辑的著作的统称。这六篇分别是《范畴篇》,《解释篇》,《前分析篇》,《后分析篇》,《论辩篇》和《辨谬篇》。
- 弗留利-威尼斯朱利亚弗留利-威尼斯朱利亚(意大利语:Friuli-Venezia Giulia,弗留利语:Friûl Vignesie Julie,斯洛文尼亚语:Furlanija-Julijska krajina,德语:Friaul-Julisch Venetien),面积7856km²,人口11
- 卷柏目卷柏(Selaginella),为石松门卷柏属的植物,属下约有700种卷柏,例子有二形卷柏、单子卷柏。如其他石松门植物,卷柏的叶子是只有一根叶脉的小型叶(microphylle),并以孢子作有性繁殖。江
- 团藻团藻(Volvox)为绿藻门团藻科一种藻体,分布于静止的小型池滨内,春季较盛,并常成纯群。藻体为球形群体,直径约一、二毫米,能游动,整体由数百至上万个具有鞭毛的细胞排列成一层中空球
- 王爷神传统宗教仪式:神明秘密社会:王爷千岁信仰属于人鬼崇拜之类,是台湾及福建闽南地区最为盛行的民间信仰之一,也是台湾民间信仰的一大特色。“王爷”是对亲王、郡王的尊称,其位阶仅次