几何级数

✍ dations ◷ 2025-06-07 12:42:45 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于 2 {displaystyle 2} 。如果一个等比数列的首项记作 a {displaystyle a} ,公比记作 r {displaystyle r} ,那么该等比数列第 n {displaystyle n} 项 a n {displaystyle a_{n}} 的一般项为:换句话说,任意一个等比数列 { a n } {displaystyle {a_{n}}} 都可以写成在一个等比数列中,给定任意两相连项 a n + 1 {displaystyle a_{n+1}} 和 a n {displaystyle a_{n}} (其中 a n ≠ 0 {displaystyle a_{n}neq 0} ),可知公比给定任意两项 a m {displaystyle a_{m}} 和 a n {displaystyle a_{n}} ,则有公比这里注意,若 m − n {displaystyle m-n} 是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说, a 1 × a 3 = a 2 2 {displaystyle a_{1}times a_{3}={a_{2}}^{2}} 。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数 m , n , p , q {displaystyle m,n,p,q} ,使得 m + n = p + q {displaystyle m+n=p+q} ,那么则有:证明如下:由此可将上面的性质一般化成:其中 k {displaystyle k} 是一个小于 n {displaystyle n} 的正整数。给定一个等比数列 { a n } {displaystyle {a_{n}}} ,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比 r = q {displaystyle r=q} ,首项 a = p q {displaystyle a=pq} 。一个等比数列的首 n {displaystyle n} 项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作 S n {displaystyle S_{n}} 。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的和是 1 + 2 + 4 + 8 = 15 {displaystyle 1+2+4+8=15} 。等比数列求和的公式如下:其中 r ≠ 1 {displaystyle rneq 1} 。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当 r ≠ 1 {displaystyle rneq 1} 时,整理后得证。当 r = 1 {displaystyle r=1} 时,可以发现:综上所述,等比数列的求和公式为:当 − 1 < r < 1 {displaystyle -1<r<1} 时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当 − 1 < r < 1 {displaystyle -1<r<1} 时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的积是 1 × 2 × 4 × 8 = 64 {displaystyle 1times 2times 4times 8=64} 。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。

相关

  • 神庙希腊神庙(古希腊语:ὁ ναός,ho naós,“居所”;语义有别于拉丁文templum以及英文“temple”(“神庙、寺庙、庙宇”),也名为希腊神殿。在古希腊宗教中的希腊圣所内是为安座众神神
  • 工具工具或称装备、器材、家私,是指能够方便人们完成工作的器具,它的好处可以是机械性,也可以是智能性的。大部分工具都是简单机械;例如一根铁棍可以当作杠杆使用,力点离开支点越远,杠
  • 抗胆碱能药物抗胆碱剂(英语:anticholinergic agent)是一种在中央神经系统与周围神经系统,阻断神经递质乙酰胆碱的物质。抗胆碱剂经由选择性阻断乙酰胆碱神经递质连结其神经细胞的受体,抑制副
  • 角秒؋ ​₳ ​ ฿ ​₿ ​ ₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​ $ ​₫ ​₯ ​֏ ​ ₠ ​€ ​ ƒ(英语:Florin sign) ​₣ ​ ₲ ​ ₴(英语:Hryvnia sign) ​ ₭ ​ ₺
  • 脂溢性皮炎脂溢性皮炎(Seborrhoeic dermatitis 或者 Seborrheic dermatitis (美式英语), seborrhea, 也叫做 Seborrheic eczema)是一种发生于皮脂溢出部位的慢性复发性皮炎。有两个好发
  • 锂-3锂-3(英语:Lithium-3,3Li),是锂的同位素之一,化学符号为3Li。是一种原子核仅由三颗质子所组成,没有中子的核素。是一个理论存在的核素,尚未实际被观测到。由于锂需要包含3个质子,因此
  • 畜牧学畜牧学是研究家畜的饲养、管理、繁育以及其制品利用的科学,是畜牧业的基础学科。家畜是指人工饲养的动物,在古代的中国家畜主要指"六畜"(马、牛、羊、鸡、犬、猪),目前人工饲养的
  • 脱氧胞苷去氧胞苷(英语:Deoxycytidine)是一种属于核苷的化合物,结构与胞苷相似,但少了一个氧原子。
  • 石氏星表原名《天文》,西汉以后被尊称为《石氏星经》。由战国时期魏国天文学家、占星家石申所著,共八卷,原著已失传。《史记·天官书》、《汉书·天文志》中引有《石氏星经》中有关五星
  • 今日新闻网NOWnews今日新闻,属综合性的网络新闻网站。于2008年4月正式上线,最大股东分别是游戏橘子、信义房屋。2008年4月1日,东森电视出售价值新台币数千万元的东森新闻报资产设备给中华