首页 >
几何级数
✍ dations ◷ 2025-04-04 11:22:38 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于
2
{displaystyle 2}
。如果一个等比数列的首项记作
a
{displaystyle a}
,公比记作
r
{displaystyle r}
,那么该等比数列第
n
{displaystyle n}
项
a
n
{displaystyle a_{n}}
的一般项为:换句话说,任意一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
都可以写成在一个等比数列中,给定任意两相连项
a
n
+
1
{displaystyle a_{n+1}}
和
a
n
{displaystyle a_{n}}
(其中
a
n
≠
0
{displaystyle a_{n}neq 0}
),可知公比给定任意两项
a
m
{displaystyle a_{m}}
和
a
n
{displaystyle a_{n}}
,则有公比这里注意,若
m
−
n
{displaystyle m-n}
是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说,
a
1
×
a
3
=
a
2
2
{displaystyle a_{1}times a_{3}={a_{2}}^{2}}
。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数
m
,
n
,
p
,
q
{displaystyle m,n,p,q}
,使得
m
+
n
=
p
+
q
{displaystyle m+n=p+q}
,那么则有:证明如下:由此可将上面的性质一般化成:其中
k
{displaystyle k}
是一个小于
n
{displaystyle n}
的正整数。给定一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比
r
=
q
{displaystyle r=q}
,首项
a
=
p
q
{displaystyle a=pq}
。一个等比数列的首
n
{displaystyle n}
项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作
S
n
{displaystyle S_{n}}
。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的和是
1
+
2
+
4
+
8
=
15
{displaystyle 1+2+4+8=15}
。等比数列求和的公式如下:其中
r
≠
1
{displaystyle rneq 1}
。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当
r
≠
1
{displaystyle rneq 1}
时,整理后得证。当
r
=
1
{displaystyle r=1}
时,可以发现:综上所述,等比数列的求和公式为:当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的积是
1
×
2
×
4
×
8
=
64
{displaystyle 1times 2times 4times 8=64}
。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。
相关
- 双鞭毛生物无根虫门 Apusozoa 泛植物 Archaeplastida 有孔虫界 Rhizaria 囊泡藻界 Chromalveolata双鞭毛生物是其真核细胞具有两个鞭毛的一种生物,是真核生物的两大类群之一。双鞭毛生
- 变态反应超敏反应(hypersensitivity),也叫变态反应,是免疫反应产生作用分子移除外来抗原的过程,这些作用分子诱导产生轻微、无临床症状或局部性的发炎反应,并不会对宿主造成组织伤害。特殊
- 脓疱病脓痂疹(Impetigo)是涉及表层皮肤的细菌感染,常见脸、手臂或是脚上出现淡黄色痂皮,发生在腹股沟和腋窝的大型水泡较少见。病灶可能有疼痛或是搔痒感,不常引起发烧。脓痂疹通常由金
- 病假病假 (或称有薪病假)是劳工能因身体健康因素,留在家里休养,并且不会失去工资。带薪病假在许多国家是法定要求,像是大部分欧洲国家、许多拉美国家,还有一些非洲和亚洲国家在法规
- 尤卡吉尔语系尤卡吉尔语系是俄罗斯尤卡吉尔人(西伯利亚人之一)的几种语言,他们生活在科雷马河(Kolyma)盆地。现时只有北尤卡吉尔语和南尤卡吉尔语两种语言存在。其他的已经消亡。这些语言与其
- 生化生物化学(英语:biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核
- 限制性片段长度多态性在分子生物学中,限制性片段长度多态性(英语:restriction fragment length polymorphism, RFLP)具有两种涵义:一是DNA分子由于核苷酸序列的不同而产生的一种可以用来相互区别的性
- 会圆术会圆术,是从《九章算术》的“方田”章所载的“弧田术”的基础发展而成的,并载于《梦溪笔谈》一书,但作著沈括并未给出这一公式的推导。所谓“会圆术”就是已知圆周,弓形的高和弦
- 摩尔曼斯克州摩尔曼斯克州(俄语:Му́рманская о́бласть,罗马化:Murmanskaya oblast),位于俄罗斯最西北部,是俄罗斯联邦主体之一,属西北部联邦管区。面积144,900平方公里,人口89
- 蔡立慧蔡立慧(1960年3月18日-),美籍华裔生物学家。1983年国立中兴大学兽医学系毕业、威斯康辛大学分子生物硕士、1990年美国德州大学西南医学中心病毒学博士、中央研究院院士,美国麻省