首页 >
几何级数
✍ dations ◷ 2025-04-02 13:19:41 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于
2
{displaystyle 2}
。如果一个等比数列的首项记作
a
{displaystyle a}
,公比记作
r
{displaystyle r}
,那么该等比数列第
n
{displaystyle n}
项
a
n
{displaystyle a_{n}}
的一般项为:换句话说,任意一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
都可以写成在一个等比数列中,给定任意两相连项
a
n
+
1
{displaystyle a_{n+1}}
和
a
n
{displaystyle a_{n}}
(其中
a
n
≠
0
{displaystyle a_{n}neq 0}
),可知公比给定任意两项
a
m
{displaystyle a_{m}}
和
a
n
{displaystyle a_{n}}
,则有公比这里注意,若
m
−
n
{displaystyle m-n}
是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说,
a
1
×
a
3
=
a
2
2
{displaystyle a_{1}times a_{3}={a_{2}}^{2}}
。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数
m
,
n
,
p
,
q
{displaystyle m,n,p,q}
,使得
m
+
n
=
p
+
q
{displaystyle m+n=p+q}
,那么则有:证明如下:由此可将上面的性质一般化成:其中
k
{displaystyle k}
是一个小于
n
{displaystyle n}
的正整数。给定一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比
r
=
q
{displaystyle r=q}
,首项
a
=
p
q
{displaystyle a=pq}
。一个等比数列的首
n
{displaystyle n}
项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作
S
n
{displaystyle S_{n}}
。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的和是
1
+
2
+
4
+
8
=
15
{displaystyle 1+2+4+8=15}
。等比数列求和的公式如下:其中
r
≠
1
{displaystyle rneq 1}
。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当
r
≠
1
{displaystyle rneq 1}
时,整理后得证。当
r
=
1
{displaystyle r=1}
时,可以发现:综上所述,等比数列的求和公式为:当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的积是
1
×
2
×
4
×
8
=
64
{displaystyle 1times 2times 4times 8=64}
。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。
相关
- 查洛特–玛丽亚氏–齿病X1进行性神经性腓骨肌萎缩症,即(Charcot-Marie-Tooth disease、C-M-T,又称腓骨肌萎缩症、恰克-马利-杜斯氏症),是以三位最早发现此病的法国研究者的姓氏共同命名的。其主要表现是双
- 弗朗西斯科·维多利亚弗朗西斯科·维多利亚(Francisco de Vitoria, Francisci de Victoria,(1480年-1546年))西班牙神学家,萨拉曼卡学派始祖。
- 阳性阳性可以指:
- 对苯醌1,4-苯醌(英语:1,4-Benzoquinone,常称为对苯醌)是一种有机化合物,分子式为C6H4O2。纯的对苯醌为亮黄色晶体,带有与氯气相似的刺激性气味;不纯的样品常常由于醌氢醌(对苯醌与氢醌所形
- 植物生态学植物生态学是生态学的一个分支学科,它研究植物的分布和数量,环境因素对植物的丰度的影响,植物和其他生物之间的相互作用。它们的实例是在北美温带落叶林的分布,沙漠植物对水的竞
- 碳纳米泡沫碳纳米泡沫,碳元素的同素异形体之一,1997年由澳大利亚国立大学的Andrei V. Rode及其合作者发现。碳纳米泡沫呈蛛网状,具有分形结构,有铁磁性。泡沫由许多原子团簇构成,每个含有约
- 金融海啸name = 'Transport', description = '交通', content = {{ type = 'text', text = [[]] }, { type = 'item', original = 'articulated bus', rule = 'zh-cn:铰接客车;zh-tw
- 末世论末世论或末日论(英语:Eschatology)是研究历史终结及其相关方面的哲学或者神学理论,神学上的末世论一般关心人类社会的终结以及如何终结等问题,而哲学上的末世论则可能着眼于人类
- 褐藻纲褐藻(学名:Phaeophyceae)是属较高等的多细胞藻类,属真核细胞生物,有1,500种左右,主要分布于大陆附近的水域,则淡水种罕见。褐藻纲外表从暗褐色的橄榄绿都有,其取决于褐藻素与叶绿素
- 罗兰·加洛斯球场罗兰·加洛斯球场(Stade Roland-Garros)是法国网球公开赛的比赛场地,坐落在巴黎西郊。这也是四大网球公开赛中唯一采用红土场地的赛事。球场的名字是为了纪念法国民族英雄罗兰