几何级数

✍ dations ◷ 2025-06-28 04:46:03 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于 2 {displaystyle 2} 。如果一个等比数列的首项记作 a {displaystyle a} ,公比记作 r {displaystyle r} ,那么该等比数列第 n {displaystyle n} 项 a n {displaystyle a_{n}} 的一般项为:换句话说,任意一个等比数列 { a n } {displaystyle {a_{n}}} 都可以写成在一个等比数列中,给定任意两相连项 a n + 1 {displaystyle a_{n+1}} 和 a n {displaystyle a_{n}} (其中 a n ≠ 0 {displaystyle a_{n}neq 0} ),可知公比给定任意两项 a m {displaystyle a_{m}} 和 a n {displaystyle a_{n}} ,则有公比这里注意,若 m − n {displaystyle m-n} 是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说, a 1 × a 3 = a 2 2 {displaystyle a_{1}times a_{3}={a_{2}}^{2}} 。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数 m , n , p , q {displaystyle m,n,p,q} ,使得 m + n = p + q {displaystyle m+n=p+q} ,那么则有:证明如下:由此可将上面的性质一般化成:其中 k {displaystyle k} 是一个小于 n {displaystyle n} 的正整数。给定一个等比数列 { a n } {displaystyle {a_{n}}} ,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比 r = q {displaystyle r=q} ,首项 a = p q {displaystyle a=pq} 。一个等比数列的首 n {displaystyle n} 项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作 S n {displaystyle S_{n}} 。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的和是 1 + 2 + 4 + 8 = 15 {displaystyle 1+2+4+8=15} 。等比数列求和的公式如下:其中 r ≠ 1 {displaystyle rneq 1} 。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当 r ≠ 1 {displaystyle rneq 1} 时,整理后得证。当 r = 1 {displaystyle r=1} 时,可以发现:综上所述,等比数列的求和公式为:当 − 1 < r < 1 {displaystyle -1<r<1} 时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当 − 1 < r < 1 {displaystyle -1<r<1} 时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的积是 1 × 2 × 4 × 8 = 64 {displaystyle 1times 2times 4times 8=64} 。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。

相关

  • 获得性免疫后天性免疫(英语:adaptive immunity)也称为获得性免疫、适应性免疫、特异性免疫、专一性防御,是一种经由与特定病原体接触后,产生能识别并针对特定病原体启动的免疫反应。和后天
  • 桥本氏桥本氏甲状腺炎也称慢性淋巴细胞性甲状腺炎(chronic lymphocytic thyroiditis)、桥本氏症(Hashimoto's disease)是一种由甲状腺被一系列细胞或抗体介导免疫过程攻击所导致的自体
  • 烟草烟草(学名:Nicotiana tabacum)为茄科烟草属下的一个种,是人类生产香烟的主要种植型烟草作物。1493年克里斯托弗·哥伦布第一次发现新大陆,伊斯帕尼奥拉岛印第安人就向他介绍了烟
  • 根瘤菌See text.根瘤菌主要指与豆类作物根部共生形成根瘤并能固氮的细菌,一般指根瘤菌属和慢生根瘤菌属;两属都属于根瘤菌目。根瘤菌侵入寄主根内,刺激根部皮层和中柱鞘的某些细胞,引
  • 工业与组织心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 阿里斯托芬阿里斯托芬(Ἀριστοφάνης,约前448年-前380年),古希腊喜剧作家,雅典公民。他被看作是古希腊喜剧尤其是旧喜剧最重要的代表。相传写有四十四部喜剧,现存《阿哈奈人》(The A
  • 本都本都(希腊语:Πόντος),古代小亚细亚北部的一个地区,在黑海南岸。公元前302年,米特里达梯一世在亚历山大大帝死后的一片混乱中创建了本都王国。米特里达梯一世是安提柯一世的
  • 斐迪南二世斐迪南二世,可能是指以下历史人物:
  • 欧仁·德拉克罗瓦欧仁·德拉克罗瓦(法语:Eugène Delacroix,1798年4月26日—1863年8月13日)是法国著名浪漫主义画家。1798年4月26日出生于法国瓦勒德马恩省,曾师从法国古典主义画派画家皮埃尔-纳
  • 维多利亚·德·洛斯·安赫莱斯维多利亚·德·洛斯·安赫莱斯·洛珮兹·加西亚(西班牙语:Victoria de los Ángeles López García,1923年11月1日-2005年1月15日),西班牙籍歌剧女高音演唱家。她于1940年代初出