首页 >
几何级数
✍ dations ◷ 2025-04-07 03:05:06 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于
2
{displaystyle 2}
。如果一个等比数列的首项记作
a
{displaystyle a}
,公比记作
r
{displaystyle r}
,那么该等比数列第
n
{displaystyle n}
项
a
n
{displaystyle a_{n}}
的一般项为:换句话说,任意一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
都可以写成在一个等比数列中,给定任意两相连项
a
n
+
1
{displaystyle a_{n+1}}
和
a
n
{displaystyle a_{n}}
(其中
a
n
≠
0
{displaystyle a_{n}neq 0}
),可知公比给定任意两项
a
m
{displaystyle a_{m}}
和
a
n
{displaystyle a_{n}}
,则有公比这里注意,若
m
−
n
{displaystyle m-n}
是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说,
a
1
×
a
3
=
a
2
2
{displaystyle a_{1}times a_{3}={a_{2}}^{2}}
。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数
m
,
n
,
p
,
q
{displaystyle m,n,p,q}
,使得
m
+
n
=
p
+
q
{displaystyle m+n=p+q}
,那么则有:证明如下:由此可将上面的性质一般化成:其中
k
{displaystyle k}
是一个小于
n
{displaystyle n}
的正整数。给定一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比
r
=
q
{displaystyle r=q}
,首项
a
=
p
q
{displaystyle a=pq}
。一个等比数列的首
n
{displaystyle n}
项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作
S
n
{displaystyle S_{n}}
。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的和是
1
+
2
+
4
+
8
=
15
{displaystyle 1+2+4+8=15}
。等比数列求和的公式如下:其中
r
≠
1
{displaystyle rneq 1}
。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当
r
≠
1
{displaystyle rneq 1}
时,整理后得证。当
r
=
1
{displaystyle r=1}
时,可以发现:综上所述,等比数列的求和公式为:当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的积是
1
×
2
×
4
×
8
=
64
{displaystyle 1times 2times 4times 8=64}
。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。
相关
- 奈替米星奈替米星(英语:Netilmicin)是一种半合成的氨基糖苷类抗生素,对需氧革兰阴性杆菌有强大抗菌活性,抗菌谱与庆大霉素相似,对大肠埃希菌、铜绿假单胞菌、吲哚阴性和阳性变形杆菌、克雷
- 弥漫性毒性甲状腺肿弥漫性毒性甲状腺肿(Toxic diffuse goiter),又称格里夫氏症(Graves' disease),为一种主要侵犯甲状腺的自身免疫性疾病。此病为导致甲状腺功能亢进症最常见的原因,且会导致甲状腺肿
- DNA修复DNA修复是细胞中经常运行的一种进程。它使基因组免受损伤和突变,因此对细胞的生存是很重要的。在人的细胞中,一般的代谢活动和环境因素(如紫外线和放射线)都能造成DNA损伤,导致每
- 国民保健署国民医疗服务体系(英语:National Health Service,简称NHS),是对英国以下四大公型医疗系统的统称:国民医疗服务体系的经费主要来自全国中央税收,用以向公众提供一系列的医疗保健服务
- StataStata是Statacorp于1985年开发出来的统计程序,在全球范围内被广泛应用于企业和学术机构中。许多使用者工作在研究领域,特别是在经济学、社会学、政治学及流行病学领域。最新的
- 脊椎关节病变脊椎关节病变(英语:spondyloarthropathy,缩写为 SpA)泛指任何影响脊椎关节的关节病变,它是一大类疾病的集合总称,而非单一个特定疾病。脊椎病变则是脊椎骨本身的问题,两者并不相同
- 奥依语奥依语(langue d'oïl),是罗曼语族的一支,源自现在法国卢瓦尔河以北、一部分比利时和海峡群岛的地区。奥依语通常是指整个奥依语支的语言,而奥依语中使用最多的变体是法语。但是
- 社会工作在NASW(美国社会工作人员协会)的文献中,指出社会工作(Social Work)是“一种专业活动,以协助个人、团体社区去强化 或恢复能力,以发挥其社会功能,并创造有助于达成其目标的社会条件
- 云彩彩云(英文:Iridescent Clouds)通常为一种荚状云1,具有明亮点或彩色边缘,其色彩称之为云彩(英文:Irisation2或Cloud Iridescence),属于一种光象3。常见的色彩是桃红色或绿色,位在距太阳
- 勋奖奖章或奖牌是一种拥有浮雕的金属制奖励品,一般用以奖励那些在运动、军事、科学、学术、艺术上或其他领域拥有特别成就及贡献者。在许多非军事项目,如一般的体育比赛,会颁发奖牌