几何级数

✍ dations ◷ 2025-12-08 10:34:56 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于 2 {displaystyle 2} 。如果一个等比数列的首项记作 a {displaystyle a} ,公比记作 r {displaystyle r} ,那么该等比数列第 n {displaystyle n} 项 a n {displaystyle a_{n}} 的一般项为:换句话说,任意一个等比数列 { a n } {displaystyle {a_{n}}} 都可以写成在一个等比数列中,给定任意两相连项 a n + 1 {displaystyle a_{n+1}} 和 a n {displaystyle a_{n}} (其中 a n ≠ 0 {displaystyle a_{n}neq 0} ),可知公比给定任意两项 a m {displaystyle a_{m}} 和 a n {displaystyle a_{n}} ,则有公比这里注意,若 m − n {displaystyle m-n} 是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说, a 1 × a 3 = a 2 2 {displaystyle a_{1}times a_{3}={a_{2}}^{2}} 。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数 m , n , p , q {displaystyle m,n,p,q} ,使得 m + n = p + q {displaystyle m+n=p+q} ,那么则有:证明如下:由此可将上面的性质一般化成:其中 k {displaystyle k} 是一个小于 n {displaystyle n} 的正整数。给定一个等比数列 { a n } {displaystyle {a_{n}}} ,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比 r = q {displaystyle r=q} ,首项 a = p q {displaystyle a=pq} 。一个等比数列的首 n {displaystyle n} 项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作 S n {displaystyle S_{n}} 。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的和是 1 + 2 + 4 + 8 = 15 {displaystyle 1+2+4+8=15} 。等比数列求和的公式如下:其中 r ≠ 1 {displaystyle rneq 1} 。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当 r ≠ 1 {displaystyle rneq 1} 时,整理后得证。当 r = 1 {displaystyle r=1} 时,可以发现:综上所述,等比数列的求和公式为:当 − 1 < r < 1 {displaystyle -1<r<1} 时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当 − 1 < r < 1 {displaystyle -1<r<1} 时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列 { 1 , 2 , 4 , 8 } {displaystyle {1,2,4,8}} 的积是 1 × 2 × 4 × 8 = 64 {displaystyle 1times 2times 4times 8=64} 。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。

相关

  • 红藻门红藻门(学名:Rhodophyta),是含有藻红素的一门藻类,属于多细胞、真核细胞的生物;约有7000种。几乎所有的红藻都生活在海洋中,他们生长在涨潮线以下的岩石上或较深的水中,有些物种可以
  • 甲状腺毒症甲状腺毒症(thyrotoxicosis)是指体内甲状腺激素对组织的作用出现异常增高,继而引起神经、循环、消化等系统兴奋性过高以及新陈代谢亢进等表现的临床综合征。导致甲状腺激素效应
  • 白斑白癜风(Vitiligo)也称为白斑、白蚀,是慢性的皮肤症状,特征是皮肤部分部位因为色素脱失而出现斑痕 。斑痕多半是白色的,而且有不规则的边缘 。该部位的皮肤也会变成白色 ,口鼻的内
  • 艾德温·史密斯纸草文稿《艾德温·史密斯纸草文稿》(Edwin Smith Papyrus)是约于公元前1600-1700年间完成的医学论文集:70,也是人类史上第一部关于创伤的外科医学著作,由莎草纸写成,长约5米(因为损毁只剩
  • 春宫图春宫图是指东亚汉字文化圈以性交为主题的传统绘画,又名“秘戏图”、“春宫画”、“春宫儿”、“春画”、“春册”。中国的春宫画起源很早,根据荷兰汉学家高罗佩考证,《汉书》中
  • 台北市立联合医院松德院区台北市立联合医院松德院区,前身为台北市立疗养院,又名台北市精神医学中心(英文:Taipei City Psychiatric Center),是位于信义区的台北市立联合医院的院区,为精神科专科医院。松德院
  • 平民会议平民会议(拉丁语:Concilium Plebis)是古代罗马共和国的主要大会和立法机构,平民可以通过该机构通过法律,选举地方行政官,审理司法案件。唯有平民保民官有权召开大会。会议可选举平
  • 严州严州,中国唐朝设置的州。武德四年(621年)以桐庐县、分水县、建德县置严州,治所在今建德市梅城镇。武德七年(624年)废严州,以桐庐县属睦州。同年,分水县省入桐庐县,建德县省入桐庐县、
  • 大禹禹(前2123年-前2055年),姒姓,夏后氏,传说名文命,后世尊称为大禹,五帝之一,也是三官大帝之一。远古时期中国神话人物,是黄帝轩辕氏玄孙,因在大禹治水中成功治理洪水之患的故事而广为人知
  • 定义谬误定义谬误是泛指一系列因定义不当造成的推理问题。探讨定义,尤其是词法定义时,必须考虑其是否恰当。恰当的词法定义,其被定义项与定义项必须等值,如有东西符合定义项却不符合被定