首页 >
几何级数
✍ dations ◷ 2025-01-23 12:03:56 #几何级数
等比数列,又名几何数列(英文:geometric sequence 或 geometric progression),是数列的一种。在等比数列中,任何相邻两项的比例相等,该比值称为公比(common ratio)。例如数列:就是一个等比数列。 在这个数列中,从第二项起,每项与其前一项之公比都等于
2
{displaystyle 2}
。如果一个等比数列的首项记作
a
{displaystyle a}
,公比记作
r
{displaystyle r}
,那么该等比数列第
n
{displaystyle n}
项
a
n
{displaystyle a_{n}}
的一般项为:换句话说,任意一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
都可以写成在一个等比数列中,给定任意两相连项
a
n
+
1
{displaystyle a_{n+1}}
和
a
n
{displaystyle a_{n}}
(其中
a
n
≠
0
{displaystyle a_{n}neq 0}
),可知公比给定任意两项
a
m
{displaystyle a_{m}}
和
a
n
{displaystyle a_{n}}
,则有公比这里注意,若
m
−
n
{displaystyle m-n}
是偶数,则公比可取此结果的正值或负值。此外,在一个等比数列中,选取某一项,该项的前一项与后一项之积,为原来该项的平方。举例来说,
a
1
×
a
3
=
a
2
2
{displaystyle a_{1}times a_{3}={a_{2}}^{2}}
。更一般地说,有:证明如下:证毕。从另一个角度看,等比数列中的任意一项,是其前一项和后一项的几何平均:此结果从上面直接可得。如果有整数
m
,
n
,
p
,
q
{displaystyle m,n,p,q}
,使得
m
+
n
=
p
+
q
{displaystyle m+n=p+q}
,那么则有:证明如下:由此可将上面的性质一般化成:其中
k
{displaystyle k}
是一个小于
n
{displaystyle n}
的正整数。给定一个等比数列
{
a
n
}
{displaystyle {a_{n}}}
,则有:从等比数列的一般项可知,任意一个可以写成形成的数列,都是一个等比数列,其中公比
r
=
q
{displaystyle r=q}
,首项
a
=
p
q
{displaystyle a=pq}
。一个等比数列的首
n
{displaystyle n}
项之和,称为等比数列和(sum of geometric sequence)或几何级数(geometric series),记作
S
n
{displaystyle S_{n}}
。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的和是
1
+
2
+
4
+
8
=
15
{displaystyle 1+2+4+8=15}
。等比数列求和的公式如下:其中
r
≠
1
{displaystyle rneq 1}
。公式证明如下:将等比数列和写作以下形式:将两边同乘以公比 .mw-parser-output .serif{font-family:Times,serif}r,有:(1)式减去(2)式,有:当
r
≠
1
{displaystyle rneq 1}
时,整理后得证。当
r
=
1
{displaystyle r=1}
时,可以发现:综上所述,等比数列的求和公式为:当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,注意到因此,我们可得无限项之和(sum to infinity)的公式为由此可见,当
−
1
<
r
<
1
{displaystyle -1<r<1}
时,几何级数会收敛到一个固定值。一个等比数列的首 n 项之积,称为等比数列积(product of geometric sequence),记作 Pn。举例来说,等比数列
{
1
,
2
,
4
,
8
}
{displaystyle {1,2,4,8}}
的积是
1
×
2
×
4
×
8
=
64
{displaystyle 1times 2times 4times 8=64}
。等比数列求积的公式如下:证明如下:最后一步,使用了等差数列的求和公式。
相关
- 量子生物学量子生物学是利用量子理论来研究生命科学的一门学科。该学科包含利用量子力学研究生物过程和分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结
- ΔFosB235414282ENSG00000125740ENSMUSG00000003545P53539P13346XM_005258691、NM_001114171、NM_006732NM_008036、XM_006539543、NM_001347586NP_001107643、NP_006723、XP_0052
- 航太航空航天工程学(aerospace engineering)是航空工程学与航天工程学的总称,涉及航空飞行器与航天飞行器有关的工程领域。它包含固体力学、流体力学(特别是空气动力学)、航天动力学
- 骨盆腔髋(拉丁语:pelvis),又称腰带、骨盆、盘骨,是一个骨骼构造,位于脊椎末端,连接脊柱和股骨,与四足动物的后肢、双足动物的下肢相连。股骨与腰带在臀部连接处形成髋关节,它是球窝关节。健
- 通量通量,或称流束是通过一个表面或一个物质的量,是一个物理学和应用数学的概念。在热学和流体力学领域中,研究输运现象时,是指在单位时间内通过单位面积的具有方向的流量,它是一个向
- 弗吉尼亚·伍尔夫弗吉尼亚·伍尔夫(英语:Virginia Woolf;1882年1月25日-1941年3月28日),英国作家,被誉为二十世纪现代主义与女性主义的先锋。在一战与二战的战间期,她是伦敦文学界的核心人物,同时也是
- 英国城市列表英国城市列表列出英国各城市(City)。由英国君主赐予城市地位(City status)的地方才可称为“城市”。直至2016年,英国共有69座城市,英格兰占其51,北爱尔兰占其5,苏格兰占其7,威尔士占
- 维多利亚·德·洛斯·安赫莱斯维多利亚·德·洛斯·安赫莱斯·洛珮兹·加西亚(西班牙语:Victoria de los Ángeles López García,1923年11月1日-2005年1月15日),西班牙籍歌剧女高音演唱家。她于1940年代初出
- 费利克斯·门德尔松雅各·路德维希·费利克斯·门德尔松·巴托尔迪(德语:Jakob Ludwig Felix Mendelssohn Bartholdy,1809年2月3日-1847年11月4日),通称费利克斯·门德尔松,又译孟德尔颂。德国犹太裔
- 激情激情 (英语:Passion),源自于古希腊动词πάσχω(paskho),意思是遭受或是承受某种情绪,适用于某人或某事非常强烈的感觉。激情是种强烈的情绪,其中包括驱使自己的感觉、充满热忱或