梅尔倒频谱

✍ dations ◷ 2025-07-02 09:40:54 #信号处理

在信号处理中,梅尔倒频谱(Mel-Frequency Cepstrum, MFC)系一个可用来代表短期音频的频谱,其原理基于用非线性的梅尔刻度(mel scale)表示的对数频谱及其线性余弦转换(linear cosine transform)上。

梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)是一组用来创建梅尔倒频谱的关键系数。由音乐信号当中的片段,可以得到一组足以代表此音乐信号之倒频谱(Cepstrum),而梅尔倒频谱系数即是从这个倒频谱中推得的倒频谱(也就是频谱的频谱)。与一般的倒频谱不同 ,梅尔倒频谱最大的特色在于,于梅尔倒频谱上的频带是均匀分布于梅尔刻度上的,也就是说,这样的频带相较于一般所看到、线性的倒频谱表示方法,和人类非线性的听觉系统更为接近。例如:在音频压缩的技术中,便常常使用梅尔倒频谱来处理。

梅尔倒频谱系数通常是用以下方法得到的:

获取梅尔倒频谱的方法众多,上述只是其中一种。

另外,ETSI在2000年左右有定义一套专为移动电话设计的梅尔倒频谱系数算法。

梅尔倒频谱系数通常可以用于作为语音识别系统中的特征质观察,例如:可以自动辨认一个人透过电话说的数字。梅尔倒频谱系数通常也可以作为声纹识别(Speaker Recognition),也就是、用来识别某段语音频号的发话者是谁的技术。

梅尔倒频谱系数在近年来于音乐分类(music genre classification)相关应用的领域也逐渐崭露头角,例如查找一段音乐的相似程度等。

梅尔频率倒谱系数MFCC和感知线性预测PLP:不同于LPC等通过对人的发声机理的研究而得到的声学特征,Mel倒谱系数MFCC和感知线性预测PLP是受人的听觉系统研究成果推动而导出的声学特征。对人的听觉机理的研究发现,当两个频率相近的音调同时发出时,人只能听到一个音调。临界带宽指的就是这样一种令人的主观感觉发生突变的带宽边界,当两个音调的频率差小于临界带宽时,人就会把两个音调听成一个,这称之为屏蔽效应。Mel刻度是对这一临界带宽的度量方法之一。MFCC的计算首先用FFT将时域信号转化成频域,之后对其对数能量谱用依照Mel刻度分布的三角滤波器组进行卷积,最后对各个滤波器的输出构成的向量进行离散余弦变换DCT,取前N个系数。PLP仍用德宾法去计算LPC参数,但在计算自相关参数时用的也是对听觉激励的对数能量谱进行DCT的方法。

梅尔倒频谱系数并非相当稳定,在计算当中,一组系数其实相当容易受到外加的噪声影响;为了对抗噪声,通常会将梅尔倒频谱系数在语音辨认上进行正规化(normalization)的动作,以减少噪声造成的影响。

另外,有些研究者会将梅尔倒频谱系数基础的算法设计的更加顽强,例如:在进行馀弦转换前增加对数化梅尔系数的能量值至一个合适的范围,以减少诸如噪声等低能量项对于整个系数结果的影响。

一般认为Paul Mermelstein 是主要致力于发展梅尔倒频谱的人,然而 Mermelstein 本人却将主要的概念功劳归给 Bridle 和 Brown for the idea:

Bridle 和 Brown 运用了一组十九个、由余弦转换导出的频谱型的系数,转换的输入值是信号在一组在频带上有非均匀间隔分布的带通滤波器后的输出。

滤波器的间隔是呈现对数分布的;因此,一般称之为梅尔式的导频谱系数

通常此两组起源都会被人当作引用使用。

另外,许多作者包括Mermelstein都认为,梅尔倒频谱中这样以频谱为基准的余弦转换函数,非常接近早期用于语音表征和辨认、对对数化频谱进型的主成分分析;关于这部分相关的信息,可参考Pols和它同事的研究。

1. 对该信号做傅立叶变换


X = F T x {\displaystyle X=FT{x}}


2. 根据下面公式算出Y


Y = log ( k = f m 1 f m + 1 | X | 2 B m ) {\displaystyle Y=\log \left(\sum _{k=f_{m-1}}^{f_{m+1}}\left|X\right|^{2}B_{m}\right)}


其中 B m {\displaystyle B_{m}} 是梅尔频率倒频谱的遮罩


B m = { 0 for  k < f m 1  and  k > f m + 1 k f m 1 f m f m 1 for  f m 1 k f m f m + 1 k f m + 1 f m for  f m k f m + 1 {\displaystyle B_{m}={\begin{cases}0&{\mbox{for }}k<f_{m-1}{\mbox{ and }}k>f_{m+1}\\{\cfrac {k-f_{m-1}}{f_{m}-f_{m-1}}}&{\mbox{for }}f_{m-1}\leq k\leq f_{m}\\{\cfrac {f_{m+1}-k}{f_{m+1}-f_{m}}}&{\mbox{for }}f_{m}\leq k\leq f_{m+1}\end{cases}}}


3.对Y做IDCT得 c x {\displaystyle c_{x}} ,因为Y是偶函数,故用IDCT(反离散余弦变换)取代IDFT(反离散傅立叶变换)


c x = 1 M m = 1 M Y c o s ( π n ( m 1 / 2 ) M ) {\displaystyle c_{x}={\frac {1}{M}}\sum _{m=1}^{M}Ycos\left({\cfrac {\pi n(m-1/2)}{M}}\right)}


相关

  • 天择说自然选择(英语:natural selection,传统上也译为天择)指生物的遗传特征在生存竞争中,由于具有某种优势或某种劣势,因而在生存能力上产生差异,并进而导致繁殖能力的差异,使得这些特征
  • 全等在几何中,全等是几何图形之间的一种合同,亦即几何图形之间的一种等价关系。 若两个几何图形的形状、大小完全相同,则称这两个图形是全等的图形。全等是相似的一种特例,当相似比
  • 22R-羟基胆固醇22-羟基胆固醇(英语:22-Hydroxycholesterol)是一种内源性的胆固醇代谢中间产物,参与甾体激素的生物合成。 胆固醇被细胞色素P450家族的CYP11A1胆固醇侧链裂解酶(P450scc)羟基化形
  • 伊尔姆·赫尔曼伊尔姆·赫尔曼(德语:Irm Hermann,1942年10月4日-2020年5月26日),德国女演员,曾参演160余部电影和电视剧作品,两次获得德国电影奖最佳女演员奖。她曾长期与德国新浪潮知名导演法斯宾
  • 直穗小檗直穗小檗(学名:)为小檗科小檗属的植物。分布在中国大陆的青海、河北、宁夏、陕西、四川、湖北、河南、甘肃、山西等地,生长于海拔800米至3,400米的地区,常生于向阳山地灌丛中、山
  • 体育西路站1号线3号线1号线3号线体育西路站是广州地铁1号线和3号线的换乘车站,位于天河区天河南一路体育西路口的地底。于1999年2月16日随1号线全线通车而正式启用;2005年12月28日随着地
  • 卡普凯克峰坐标:80°42′S 158°36′E / 80.700°S 158.600°E / -80.700; 158.600卡普凯克峰(英语:Cupcake Peaks),是南极洲的山峰,位于沙克尔顿海岸,属于丘吉尔山脉的一部分,海拔高度1,391米
  • 刘锦云刘锦云(1938年-),笔名锦云。河北雄县人,中华人民共和国剧作家,一级编剧,北京人民艺术剧院编剧、原院长,中国戏剧家协会原副主席。
  • 丁令斌丁令斌,(1962年7月20日-),圣名伯多禄,天主教长治教区第四任正权主教。北京政府只承认他为助理主教,“辅助”因接受非法祝圣而对教区没有管治权的靳道远“主教”。出生于一个天主教
  • AbemaTVABEMA是由AbemaTV股份有限公司负责运营的日本互联网电视台,在电脑端和智能手机端提供视频直播服务,2020年4月11日前的服务名为AbemaTV。AbemaTV股份有限公司由CyberAgent和朝