折纸公理

✍ dations ◷ 2025-04-26 12:50:18 #几何学,公理,折纸,趣味数学

折纸公理,又称藤田-羽鸟公理或藤田-贾斯汀公理,是折纸数学的基本公理。假定所有折纸操作均在理想的平面上进行,并且所有折痕都是直线,那么这些公理描述了通过折纸可能达成的所有数学操作。

折纸定理最早于1989年由雅克·贾斯汀(Jacques Justin)发现。截至目前为止,共推衍了6个公理,其中,公理1-6又于1991年由日裔意大利数学家藤田文章发现。定理7也于2001年由羽鸟公士郎发现。贾斯汀和罗伯特·朗(Robert J. Lang)也同样发现了公理7。

前6个公理又叫做藤田公理,公理7由羽鸟公士郎发现,贾斯汀和罗伯特·朗(Robert J. Lang)也同样发现了公理7。7条公理如下:

公理5可能有最多2个解,公理6可能有最多3个解,而尺规作图的公理最多只有两个解。所以,折纸的作图能力要强于尺规作图。就是说,尺规作图相当于在解二次方程,而折纸几何相当于解三次方程。因而诸如三等分角、倍立方等尺规作图无法解决的问题却可以用折纸几何解决。但是公理6在实践中需要将纸“滑动”,这其实相当于二刻尺作图,这在标准的尺规作图中是不被允许的。

罗伯特·朗证明了这七个公理已经是折纸几何的全部公理了。

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,有且仅有一条折痕同时过这两点。

过平面上两点对折

以参数方程表示的话,过2点的直线可以表示为:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,有且仅有一种方法把 p 1 {\displaystyle p_{1}} 折到 p 2 {\displaystyle p_{2}} 上。

将一点折往另一点

这条公理相当于是作线段 p 1 p 2 ¯ {\displaystyle {\overline {p_{1}p_{2}}}} 的垂直平分线。这可以通过以下四个步骤完成:

给定两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以把 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}} 上。

将一条线折到另一条上

这条公理相当于是找出 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 组成的角的平分线。假设 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} l 1 {\displaystyle l_{1}} 上任意两点, q 1 {\displaystyle q_{1}} q 2 {\displaystyle q_{2}} l 2 {\displaystyle l_{2}} 上任意两点, u {\displaystyle \mathbf {u} } v {\displaystyle \mathbf {v} } 分别是 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 方向的单位向量:

如果两直线不平行,它们的交点为:

其中

两条直线所夹的一个角的平分线方向是:

折痕的参数方程是:

这两直线还有另一个角平分线,两条角平分线互相垂直,且都过点 p i n t {\displaystyle p_{int}} 。而沿着任意一条角平分线折都能将 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}} 上。但在实践中可能因为交点的位置(比如交点在纸外)使沿着其中一条角平分线的折叠无法实施。

如果两条直线平行,那么只要沿着两直线中间的一条线(与两直线平行,到两直线距离相等)折叠就可以将 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}}

给定一点 p 1 {\displaystyle p_{1}} 和一条直线 l 1 {\displaystyle l_{1}} ,有且仅有一种方法过 p 1 {\displaystyle p_{1}} 折出 l 1 {\displaystyle l_{1}} 的垂线。

过一点折一条直线的垂线

向量 v {\displaystyle \mathbf {v} } 是垂直于 l 1 {\displaystyle l_{1}} 的单位向量,那么折痕的参数方程是:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 和一条直线 l 1 {\displaystyle l_{1}} ,可以沿过 p 2 {\displaystyle p_{2}} 的直线将 p 1 {\displaystyle p_{1}} 折到 l 1 {\displaystyle l_{1}} 上。

将一点沿着过另一点的直线折到一条直线上

这个公理相当于找出圆和直线的交点,所以有最多2个解,最少也可能无解。这取决于直线 l 1 {\displaystyle l_{1}} 和以 p 2 {\displaystyle p_{2}} 为圆心, p 2 {\displaystyle p_{2}} p 1 {\displaystyle p_{1}} 的距离为半径的圆的位置关系。如果直线和圆不相交则无解,相切则有1解,相交则有2解.

如果我们知道直线上两点 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})} ,那么直线可以表示为:

如果圆心 p 2 = ( x c , y c ) {\displaystyle p_{2}=(x_{c},y_{c})} ,半径 r = | p 1 p 2 | {\displaystyle r=\left|p_{1}-p_{2}\right|} 。那么这个圆可以表示为:

为了确定圆和直线的交点,将直线方程代入圆方程,得:

或者可以简化为:

其中:

然后,只要解以下方程就能确定直线和圆的交点:

如果判别式 b 2 4 a c < 0 {\displaystyle b^{2}-4ac<0} ,那么方程无实数解,圆和直线没有交点;如果辨别式等于0,那么方程有一解,圆和直线相切;如果辨别式大于0,方程有两解,圆和直线有两个交点。令 d 1 {\displaystyle d_{1}} d 2 {\displaystyle d_{2}} 是两个交点(如果存在),那么,我们可以得到线段如下:

折痕 F 1 ( s ) {\displaystyle F_{1}(s)} 垂直平分 m 1 {\displaystyle m_{1}} ,可以将 p 1 {\displaystyle p_{1}} 折到 d 1 {\displaystyle d_{1}} 。同样,折痕 F 2 ( s ) {\displaystyle F_{2}(s)} 垂直平分 m 2 {\displaystyle m_{2}} ,可以将 p 1 {\displaystyle p_{1}} 折到 d 2 {\displaystyle d_{2}} 。只要应用公理2就可以找到垂直平分线。折痕的参数方程是:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 和两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以一次将 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 分别折到 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 上。

Huzita axiom 6.png

这个公理相当于找到同时与两条抛物线相切的直线,等价于解一个三次方程。两条抛物线的焦点分别是 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,准线分别是 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}}

给定一点 p {\displaystyle p} 和两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以沿着 l 2 {\displaystyle l_{2}} 的垂线将 p 1 {\displaystyle p_{1}} 折到 l 1 {\displaystyle l_{1}} 上。

Huzita-Hatori axiom 7.png

p {\displaystyle p} 点作 l 2 {\displaystyle l_{2}} 的平行线,交 l 1 {\displaystyle l_{1}} q {\displaystyle q} ,这个公理就是要找出线段 p q ¯ {\displaystyle {\overline {pq}}} 的垂直平分线。沿着这条垂直平分线折,就可以将 p {\displaystyle p} 折到 q {\displaystyle q} 上。


相关

  • 埃及第三王朝第八第十埃及第三王朝是权力和胜利的开始,古埃及文明从此进入成熟阶段,此时出现了以左塞尔金字塔建筑群为代表的恢宏壮观的石头建筑。该建筑群的设计师、作家兼学者的伊姆霍特
  • 土壤湿度土壤(德语:Boden,英语:soil)是一种自然体,由数层不同厚度的土层(德语:Bodenhorizont,英语:soil horizon)所构成,主要成分是矿物质。土壤和母质(岩石)的差异主要是表现在形态特征或物理、化
  • 佛契哥特罗伯·佛契哥特(英语:Robert Francis Furchgott,1916年6月4日-2009年5月19日),生于美国南卡罗莱那州的查尔斯顿,美国化学家。佛契哥特于1937年在北卡罗来纳大学化学系学士毕业,并于1
  • 内布拉斯加-林肯大学内布拉斯加大学林肯分校(University of Nebraska–Lincoln,简称UNL、NU,又译内布拉斯加-林肯大学)于1869年根据《土地拨赠法案》创建。是内布拉斯加大学的最主要成员及最早的分
  • 夏尔·尼科勒夏尔·朱尔·亨利·尼科勒(Charles Jules Henri Nicolle,1866年9月21日-1936年2月28日)是一位法国细菌学家,曾经因为关于辨认出虱子为斑疹伤寒的传染者,而获得1928年诺贝尔生理学
  • 有铰纲见内文有铰纲(学名:Articulata),又名尾茎纲(Pygocaulia),是腕足动物门的一个已废止的纲级分类。有铰纲与无铰纲相对,是腕足动物门中种类最多的一类。它们的特征是两枚有铰齿的碳酸钙
  • 克莱森酯缩合反应克莱森缩合反应(Claisen缩合反应)是指两分子羧酸酯在强碱(如乙醇钠)催化下,失去一分子醇而缩合为一分子β-羰基羧酸酯的反应。参与反应的两个酯分子不必相同,但其中一个必须在酰基
  • 塞缪尔·亨廷顿塞缪尔·亨廷顿可以指:
  • 瑞士各州人类发展指数列表这是一个瑞士各州的人类发展指数列表,2016年的报告采用的是2015年的数据。
  • 曼达瓦尔曼达瓦尔(Mandawar),是印度拉贾斯坦邦Dausa县的一个城镇。总人口10108(2001年)。该地2001年总人口10108人,其中男性5400人,女性4708人;0—6岁人口1567人,其中男847人,女720人;识字率68.