折纸公理

✍ dations ◷ 2025-08-02 20:02:39 #几何学,公理,折纸,趣味数学

折纸公理,又称藤田-羽鸟公理或藤田-贾斯汀公理,是折纸数学的基本公理。假定所有折纸操作均在理想的平面上进行,并且所有折痕都是直线,那么这些公理描述了通过折纸可能达成的所有数学操作。

折纸定理最早于1989年由雅克·贾斯汀(Jacques Justin)发现。截至目前为止,共推衍了6个公理,其中,公理1-6又于1991年由日裔意大利数学家藤田文章发现。定理7也于2001年由羽鸟公士郎发现。贾斯汀和罗伯特·朗(Robert J. Lang)也同样发现了公理7。

前6个公理又叫做藤田公理,公理7由羽鸟公士郎发现,贾斯汀和罗伯特·朗(Robert J. Lang)也同样发现了公理7。7条公理如下:

公理5可能有最多2个解,公理6可能有最多3个解,而尺规作图的公理最多只有两个解。所以,折纸的作图能力要强于尺规作图。就是说,尺规作图相当于在解二次方程,而折纸几何相当于解三次方程。因而诸如三等分角、倍立方等尺规作图无法解决的问题却可以用折纸几何解决。但是公理6在实践中需要将纸“滑动”,这其实相当于二刻尺作图,这在标准的尺规作图中是不被允许的。

罗伯特·朗证明了这七个公理已经是折纸几何的全部公理了。

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,有且仅有一条折痕同时过这两点。

过平面上两点对折

以参数方程表示的话,过2点的直线可以表示为:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,有且仅有一种方法把 p 1 {\displaystyle p_{1}} 折到 p 2 {\displaystyle p_{2}} 上。

将一点折往另一点

这条公理相当于是作线段 p 1 p 2 ¯ {\displaystyle {\overline {p_{1}p_{2}}}} 的垂直平分线。这可以通过以下四个步骤完成:

给定两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以把 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}} 上。

将一条线折到另一条上

这条公理相当于是找出 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 组成的角的平分线。假设 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} l 1 {\displaystyle l_{1}} 上任意两点, q 1 {\displaystyle q_{1}} q 2 {\displaystyle q_{2}} l 2 {\displaystyle l_{2}} 上任意两点, u {\displaystyle \mathbf {u} } v {\displaystyle \mathbf {v} } 分别是 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 方向的单位向量:

如果两直线不平行,它们的交点为:

其中

两条直线所夹的一个角的平分线方向是:

折痕的参数方程是:

这两直线还有另一个角平分线,两条角平分线互相垂直,且都过点 p i n t {\displaystyle p_{int}} 。而沿着任意一条角平分线折都能将 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}} 上。但在实践中可能因为交点的位置(比如交点在纸外)使沿着其中一条角平分线的折叠无法实施。

如果两条直线平行,那么只要沿着两直线中间的一条线(与两直线平行,到两直线距离相等)折叠就可以将 l 1 {\displaystyle l_{1}} 折到 l 2 {\displaystyle l_{2}}

给定一点 p 1 {\displaystyle p_{1}} 和一条直线 l 1 {\displaystyle l_{1}} ,有且仅有一种方法过 p 1 {\displaystyle p_{1}} 折出 l 1 {\displaystyle l_{1}} 的垂线。

过一点折一条直线的垂线

向量 v {\displaystyle \mathbf {v} } 是垂直于 l 1 {\displaystyle l_{1}} 的单位向量,那么折痕的参数方程是:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 和一条直线 l 1 {\displaystyle l_{1}} ,可以沿过 p 2 {\displaystyle p_{2}} 的直线将 p 1 {\displaystyle p_{1}} 折到 l 1 {\displaystyle l_{1}} 上。

将一点沿着过另一点的直线折到一条直线上

这个公理相当于找出圆和直线的交点,所以有最多2个解,最少也可能无解。这取决于直线 l 1 {\displaystyle l_{1}} 和以 p 2 {\displaystyle p_{2}} 为圆心, p 2 {\displaystyle p_{2}} p 1 {\displaystyle p_{1}} 的距离为半径的圆的位置关系。如果直线和圆不相交则无解,相切则有1解,相交则有2解.

如果我们知道直线上两点 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} ( x 2 , y 2 ) {\displaystyle (x_{2},y_{2})} ,那么直线可以表示为:

如果圆心 p 2 = ( x c , y c ) {\displaystyle p_{2}=(x_{c},y_{c})} ,半径 r = | p 1 p 2 | {\displaystyle r=\left|p_{1}-p_{2}\right|} 。那么这个圆可以表示为:

为了确定圆和直线的交点,将直线方程代入圆方程,得:

或者可以简化为:

其中:

然后,只要解以下方程就能确定直线和圆的交点:

如果判别式 b 2 4 a c < 0 {\displaystyle b^{2}-4ac<0} ,那么方程无实数解,圆和直线没有交点;如果辨别式等于0,那么方程有一解,圆和直线相切;如果辨别式大于0,方程有两解,圆和直线有两个交点。令 d 1 {\displaystyle d_{1}} d 2 {\displaystyle d_{2}} 是两个交点(如果存在),那么,我们可以得到线段如下:

折痕 F 1 ( s ) {\displaystyle F_{1}(s)} 垂直平分 m 1 {\displaystyle m_{1}} ,可以将 p 1 {\displaystyle p_{1}} 折到 d 1 {\displaystyle d_{1}} 。同样,折痕 F 2 ( s ) {\displaystyle F_{2}(s)} 垂直平分 m 2 {\displaystyle m_{2}} ,可以将 p 1 {\displaystyle p_{1}} 折到 d 2 {\displaystyle d_{2}} 。只要应用公理2就可以找到垂直平分线。折痕的参数方程是:

给定两点 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 和两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以一次将 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} 分别折到 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} 上。

Huzita axiom 6.png

这个公理相当于找到同时与两条抛物线相切的直线,等价于解一个三次方程。两条抛物线的焦点分别是 p 1 {\displaystyle p_{1}} p 2 {\displaystyle p_{2}} ,准线分别是 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}}

给定一点 p {\displaystyle p} 和两直线 l 1 {\displaystyle l_{1}} l 2 {\displaystyle l_{2}} ,可以沿着 l 2 {\displaystyle l_{2}} 的垂线将 p 1 {\displaystyle p_{1}} 折到 l 1 {\displaystyle l_{1}} 上。

Huzita-Hatori axiom 7.png

p {\displaystyle p} 点作 l 2 {\displaystyle l_{2}} 的平行线,交 l 1 {\displaystyle l_{1}} q {\displaystyle q} ,这个公理就是要找出线段 p q ¯ {\displaystyle {\overline {pq}}} 的垂直平分线。沿着这条垂直平分线折,就可以将 p {\displaystyle p} 折到 q {\displaystyle q} 上。


相关

  • 性传播疾病及感染性感染疾病(英语:Sexually transmitted infections, STI),又称性病(英语:Venereal Disease, VD)或花柳病,描述因性行为(指阴道性行为、肛交和口交)而传播的疾病。大多数的性感染疾病一
  • 费尔巴哈路德维希·安德列斯·费尔巴哈(德语:Ludwig Andreas von Feuerbach,1804年7月28日-1872年9月13日),德国哲学家。出生于拜仁州(巴伐利亚)下拜恩区的首府兰茨胡特,逝于同一州的纽伦堡,是
  • 监护人监护人是指一个人在未成熟、经验不足或社会认为需要受监护的情况下对其进行指导和监督的人,尤其指避免监护对象行差踏错者。监护人不一定有法律地位。但一些政治人物的监护人
  • 辛努塞尔特三世辛努塞尔特三世 Senusret III (希腊人用的称呼是塞索斯特利斯三世 Sesostris III,另一埃及名为森沃斯勒 Senwosret,意为“沃斯雷特女神的子民”)古埃及第十二王朝法老(前苏联历史
  • 茱蒂·霍利德茱蒂·霍利德(英语:Judy Holliday,1921年6月21日-1965年6月7日),美国女演员,曾获奥斯卡最佳女主角奖与金球奖最佳音乐及喜剧类电影女主角。茱蒂·霍利德是家中独生女,出生时名为朱迪
  • 奥萨玛·本拉登苏联-阿富汗战争 反恐战争奥萨马·本·穆罕默德·本·阿瓦德·本·拉登(阿拉伯语:أسامة بن محمد بن عوض بن لادن‎,拉丁转写:Usāmah bin Muḥammad bin A
  • 名称来源美国50个州份的名称源自不同的语言。当中24个州名来自美洲原住民语言:8个源自阿尔冈昆语、7个源自苏语(英语:Siouan languages)(其中1个经阿尔冈昆语之一的迈阿密-伊利诺伊语(英语
  • 本因坊伯元本因坊伯元(1726年-1754年9月26日),本姓小崎,亦有尾崎的说法,法名日净,生于武藏国幸手郡天神岛村,日本江户时代围棋棋士。八世本因坊,棋力六段。父亲名为小崎元右卫门,家中从事农业。1
  • WoW64WoW64(Windows 32-bit on Windows 64-bit)是Microsoft Windows操作系统的一个子系统,它提供在所有Windows 64位系统上运行32位应用程序的能力——这包括Windows XP Professiona
  • O&O DefragO&O Defrag是一个磁盘整理工具,支持FAT32和NTFS文件系統,可设定整理任务。分为专业版(Professional)和服务器(Server)版。它有多种整理方式,根据不同的碎片程度选用,整理系统盘可以