一个半径为 的圆的面积为 个全等的三角形组成,总面积大于 为半径的无穷薄圆环,贡献的面积是,1962年),惠更斯步其后尘(,1654年),Gerretsen & Verdenduin(1983, pp. 243–250) 记载了这种方法。
给定一个圆周,设 边形,边为 的估计需要大约 100 个随机样本(Thijsse 2006,p. 273)。在某些情形,蒙特卡罗算法是数值逼近可用的最好方法。
我们已经看到可以将圆分为无穷块重组为一个长方形。最近(Laczkovich 1990)发现的一个惊人的事实是我们可以将圆分为很大但有限块然后重拼成一个相同面积的正方形。这称为塔斯基分割圆问题。米可斯·拉兹柯维奇的证明本质是他证明了“存在”这样的分解(事实上有很多),但是没有给出任何实际的分解。
我们可以将圆伸缩长为一个椭圆。因为伸缩是一个平面的线性变换,一个变形因子会改变面积但是保持面积的比例。这个观察可以用于从单位圆得出任何椭圆的面积。
考虑单位圆内切于边长为 2 的正方形。一个伸长或收缩分别把水平与垂直半径变为椭圆的半长轴与半短轴。正方形变为一个外切于椭圆的长方形。圆与正方形面积比为,这意味着椭圆与长方形的面积比也是。假设和分别为椭圆的半长轴与半短轴。因长方形的面积为,从而椭圆的面积是。
我们也可以考虑高维数类似测度,比如可能想要求出球体的体积。当我们知道球面面积公式后,可以使用与圆一样的“洋葱”积分法。