买卖权平价关系

✍ dations ◷ 2025-12-06 17:59:04 #买卖权平价关系

在金融数学中,买卖权平价关系,是指具有相同的行使价与到期日的欧式看涨期权与欧式看跌期权,其价格之间存在的基本关系。如果平价关系不成立,则存在套利的空间。具体地说,一份由买入欧式看涨期权和卖出欧式看跌期权组合成的投资组合,其价格等于一份与它们有相同标的资产、行使价与到期日的远期合约的价格。这是因为在到期日,如果资产价格高于行使价,则会执行欧式看涨期权,反之则执行欧式看跌期权。在任一种情况下,都等于用行使价买入一单位标的资产。因此这个投资组合等价于在到期日用行使价买入一单位标的资产的远期合约。在无套利原则下,两者在初始的价格应当等同,此即买卖权平价关系。

买卖权平价关系成立,需要若干的假设前提。现实市场中存在交易成本,因此买卖权平价关系不完全成立。然而,在高流通性市场中,可以近似认为买卖权平价关系成立。

买卖权平价关系基于静态复制,因此需要若干基本的假设前提,即存在标的资产的远期合约。如果不存在标的资产的远期合约,则要求可以借入固定资本(比如债券)买入标的资产的能力或者借入并卖出标的资产买入固定资本的能力。如此才可以构成自融资组合,作为复制远期合约的手段。

以上的假设前提并不要求在初始日期和到期日之间有交易,因此相对于那些基于布莱克-舒尔斯模型的关系式来说,前提需求更弱。后者一般要求在全过程中动态复制,并能够持续买入卖出标的资产。

以上的假设前提包括了允许进行衍生交易,因此要求能够以保证金交易(以及相应的资金成本),并且牵涉到买卖的交易成本,特别是买卖价差。所以,买卖权平价关系只在理想中的无摩擦资本市场(完美资本市场,无限流通市场)上才完全成立。不过,如果现实市场的流通性足够高,那么买卖差价可以忽略不计,平权关系近似成立。比如说,主流货币的外汇市场或者主流股指的外汇市场在没有大波动的情况下,可以认为近似于无摩擦资本市场。

买卖权平价关系有多种不同的表述方式。最普遍的方式是:

其中是欧式看涨期权现价,是欧式看跌期权现价,是折现系数,是远期合约价格,是行使价。等式左侧是一个买入一单位欧式看涨期权和卖出一单位欧式看跌期权的投资组合的现价,右侧括弧中是在到期日以行使价执行一个远期合约的价格,因此贴现后(乘以折现系数)即为其现价。注意到标的资产现价可以表达成远期合约现价与折现系数的乘积: = 。因此以代替等式中的,即得:

重新排列后,可以得到另一种解释方式:

此时,等式左侧是一份信用买权,即买入一份欧式看涨期权并加上在到期日可以行使期权(以行使价购买一单位标的资产)的必要现金额(或者等价债券)。等式右侧则是一个保护性看跌期权,即买入一单位的标的资产以及一份欧式看跌期权,这样当标的资产在到期日低于行使价时,可以用行使价卖出。两侧的的投资组合在到期日的价值都是(T, K)。即,至少保证有的价值,而当标的资产价格高于时则可拥有一单位标的资产的价值。因此根据无套利原则,两侧的投资组合在初始的价值也应当相同。这是另一种证明或阐释买卖权平价关系的方式。

更具体的表述为:

其中

要注意的是,上述等式右侧也是买入一个在到期日交付金额的远期合约的价格。因此,这可以解释为:一个买入一单位欧式看涨期权并卖出一单位欧式看跌期权的投资组合,等价于买入一单位远期合约。特别地,如果标的资产不可买卖,但存在其上的远期合约,那么可以将右侧的表达式以合约价格代替。

如果债券利率在讨论的期限内不发生变动,恒定为 r {displaystyle r} 交付的远期合约的价格。

我们会假设看涨与看跌期权都是期权交易市场上的产品。但它们的标的资产可以是任何可交易资产。在无套利原则中,能够买进和卖出标的资产是关键条件。

首先注意到,基于无套利原则(价格必然是不可套利的),两个投资组合如果在到期日拥有相同的价值,那么在之前的任何时刻,它们必然也拥有相同的价值。要证明这一点,可以假设,如果在之前的某个时刻,其中一个投资组合比另外一个投资组合更便宜,那么只要买空其中更便宜的投资组合,并且卖空较贵的投资组合,这样,在时刻,总的投资组合将会变成零价值(所有的资产和负债抵消)。这说明,在时刻赚取的差价利润是无风险的利润。这违反了无套利原则。

接下来,我们会创造两个投资组合,它们有相同的支付价值(静态复制)并且依照以上的原理来推导出买卖权平价关系。

考虑一个欧式看涨期权、一个欧式看跌期权,它们有相同的行使价、相同的到期日,建立在相同的标的资产上,并且在时限内没有股息。假设存在到期日的价值为1单位金额的债券。债券价格可以是随机的(与标的资产价格一样),但必须在到期日时刻到期并且价值为1单位金额。

设标的资产在时刻的价格为()。现在设立一个投资组合:买入一份欧式看涨期权,卖出一份欧式看跌期权,要求在同一个到期日,行使价都是。这个投资组合的支付价值为() - 。再设立一个投资组合,买入一单位的标的资产股权,借入份债券。注意,第二个投资组合在到期日的支付价值也是() - ,因为到时标的资产股权的单位价格是(),需要返还的债券价值变为。

以上两个投资组合在时刻的价值相同,因此在之前的任意时刻,两者的价值也应当相同。于是可推导出如下的关系:

根据无套利原则,这个等式在任意时刻都成立。已知给定时刻的欧式看涨期权价格、欧式看跌期权价格、标的资产价格和零息票债券价格中的任意三者,都可以通过以上的等式推出第四者的价格。

如果标的资产在时限内有股息,那么用类似以上的推导方式也可以推导出修正的平价关系。只需要在第一个投资组合补上股息数量的零息债券。

1904年,一位叫尼尔森的纽约期权套利交易员出版了一本名为《期权与套利入门》的书。书中详细刻画了买卖权平价关系。这本书在21世纪初被艾斯本·加尔德·豪格重新发现。豪格在自己的著作《模型衍生品的模型》中多次使用了尼尔森的书作为参考。

亨利·德意志在他1910年出版的《金条、金币、支票、股票、股权和期权的套利》一书第二版中描绘了买卖权平价关系。不过其中的描述没有尼尔森书中的那么详细。

数学教授文曾子·布隆赞在1908年也推导过买卖权平价关系,并将其用于他的套利理论,建立了一系列的数学期权模型。布隆赞的工作是21世纪后由沃夫冈·哈夫那教授与海恩兹·齐默曼教授重新发现的。布隆赞的原作是一本用德文写的书,现在已经被翻译成英语并在哈夫那与齐默曼的著作下出版。

现代学术著作中首次提到买卖权平价关系可能是斯投尔1969年的论文《看跌与看涨期权之间的关系》。

使用买卖权平价关系可以推演出如下的应用方式:

相关

  • 糖皮质激素糖皮质激素(英语:glucocorticoid;又称葡萄糖皮质激素)是一种肾上腺皮质激素,是由肾上腺皮质中层的束状带分泌的类固醇激素,也可由化学方法人工合成。人体的可的松和皮质醇即属于糖
  • 无定形体无定形体,或称无定形体、无定形形固体,是其中的原子不按照一定空间顺序排列的固体,与晶体相对应。常见的无定形体包括玻璃和很多高分子化合物如聚苯乙烯等。只要冷却速度足够快
  • 门牙门齿(Incisor)是异齿型哺乳类动物的第一类牙齿。不少草食性和杂食性的哺乳类,诸如人类和马匹,均需以门齿来切断食物。而肉食性动物,诸如猫科和犬科动物,它们的门齿较少,会以犬齿和
  • 蒋孝先蒋孝先(1900年-1936年),字昭卿,别字啸剑,1900年(一说1899年)生于浙江省奉化县(今宁波市奉化区)溪口。蒋中正的堂侄孙,故称蒋中正为族叔公(“伯父”为误传)。西安事变时被奉军所杀,追赠为国
  • 常麟常麟(?-?),字汝仁,浙江嘉兴府嘉兴县人,民籍,明朝政治人物。浙江乡试第五十三名举人。成化十七年(1481年)中式辛丑科二甲第三十五名进士。曾祖常仲信;祖父常士昌,知府;父常缙,前母程氏;马氏。
  • SJ returns《SJ Returns》(朝鲜语:슈주 리턴즈,英语:SJ Returns)为韩国综艺节目,由Super Junior出演,节目以Super Junior八辑《PLAY》从回归前120天开始进行的录音花絮、练习室以及MV拍摄等为
  • 艾茨特西基峰坐标:43°07′06.68″N 02°37′40.54″W / 43.1185222°N 2.6279278°W / 43.1185222; -2.6279278艾茨特西基峰(西班牙语:Aitz Txiki),是西班牙的山峰,位于该国北部巴斯克自治区,
  • 勇者义彦和魔王之城《勇者义彦和魔王之城》(日语:勇者ヨシヒコと魔王の城/ゆうしゃヨシヒコとまおうのしろ)为东京电视网2011年7月8日起至09月23日止,于东京电视台的电视剧24(毎周五24:12-24:53)时段播出;由福田雄一编剧、导演,山田孝之主演的低成本、高人气之奇幻搞笑深夜电视剧。此系列作品的第二部,是于2012年10月12日起至12月21日止的《勇者义彦和恶灵之钥》(日语:勇者ヨシヒコと悪霊の鍵);第三部则为睽违四年多后的2016年10月份起播出的《勇者义彦和被引导的七人》(日语:勇者ヨシヒコと導かれし七人)。
  • 普救一位神教普救一位神教(英语:Unitarian Universalism),是一个开明、包容的宗教。UU一般珍惜创造性、自由、慈心;接受多元化和互联性;致力促进个人灵性成长;并且通过礼拜、同伴关系、个人经验、社会行动、善行、和教育,促进公义。UU运动原是综合了自由主义神学基督新教的“一位神派”(Unitarianism)和“普救派”(Universalism)两派观点而成,但不属于基督教派。虽然不少UU信徒欣赏和重视基督教灵性的元素,但此宗教本身对信奉的具体内容并无要求,纯属个人选择。UU信众是基于一同灵修的目的
  • 石寨山石寨山,位于中国广东省中山市五桂山区南桥村南蛇塘东北1.1公里处,海拔417.2米,是五桂山山脉的一座山体。