悖论

✍ dations ◷ 2024-12-22 17:31:37 #悖论
悖论(英语:Paradox),亦称为佯谬或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语παράδοξος ,paradoxos,意思是“未预料到的”、“奇怪的”。 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。paradox其实亦有“似非而是”的解释。即是用普通常识看上去不正确,但其实是正确或是有可能的。例如“站着比走路更累”。一般常识是走路比站着累,但要一个人例如在公园里站一个小时,他可能宁愿走动一个小时。因为“站着比走路更累”。也例如狭义相对论里面的双生子佯谬亦是另外一个例子。佛法中也有释迦牟尼佛破外道悖论的例子:如《大智度论》卷一中举出长爪梵志的例子:长爪梵志提倡一种“一切法不受”的主张,其意思是说他不接受世间一切理论。释迦牟尼佛就问他:“你接不接受你自己所建立的这个“一切法不受”的理论?”长爪梵志像一匹千里马一样有智慧,不必等到鞭子打到身上才起跑,只看到鞭影就觉悟了。换句话说,当释迦牟尼佛提出这个问题的时候,长爪梵志就知道自己的理论是有问题的──如果接受,那就是“接受一种理论”这与他自己建立的“一切法不受”的主张违背;如果不接受,那他的主张就不存在。就这样,一方面显示长爪梵志的理论是一种悖论,另一方面也突显释迦牟尼佛以非常简短的开示就把长爪梵志折服了。抛开悖论的各种含义,通常所说的导致矛盾的悖论是指逻辑悖论。要成为一个逻辑悖论,应当满足如下条件:因此,要判断一个悖论是否真的逻辑悖论,就是要确定要素A、L和E,特别是要确认E中的命题都是真命题,而且所给出的两个证明都是正确合规的证明。如果E中的命题不真,或者所给出的证明是错的,则这不是一个逻辑悖论,而是一个逻辑错误。许多逻辑悖论最终都可以归结为一个命题A⇔¬A,称为悖论情形(paradox situation),是进一步推出矛盾的依据。根据悖论情形,可以有证明1:假设A为真,可以推出A为假,矛盾,因此A为假。但同时也可以有证明2:假设A为假,可以推出A为真,矛盾,因此A为真。证明1和证明2都是正确合规的证明。因此问题就是,A⇔¬A在相关系统中是不是一个真命题。如果是真命题,悖论成立,是相关系统有问题,需要改进。而且改进相关系统以消除悖论的思路也就在于如何避免这一悖论情形。如果不是真命题,那就不能由它推出矛盾,而且该悖论实际上就是一个逻辑错误:把一个假命题当作了真命题,并用它进行推理。可以归结为悖论情形并不是悖论的必要条件。例如,“飞矢不达”悖论,也称为芝诺悖论,就不能归结为悖论情形。该悖论只证明“飞矢不达”,因为“飞矢必达”显而易见,人人都会证明。对于“飞矢不达”悖论,或者承认它是个悖论,或者证明它不是悖论,即证明“飞矢不达”的证明是错的。而解决的方法也只有证明它不是悖论或修改现有系统。令人吃惊的是,目前还没有一个权威的证明否定它是个悖论。背景命题是根据悖论的描述归纳出来的,比较原始并接近悖论的描述。悖论情形是根据背景命题推理而得到的,进一步就可直接推出矛盾。因此,只有当所有背景命题中的命题都为真时,悖论情形才是一个真命题。所谈论的悖论才是一个真正的逻辑悖论。例如罗素悖论,A=(R∈R),L=“朴素集合论”,E只有一个命题:R∈R⇔R∉R。背景命题为真是因为朴素集合论有一个概括公理:对任意性质P(x),存在集合S,使得对任意对象x,x∈S⇔P(x)成立。即存在集合S,它刚好包含所有具备性质P(x)的对象,而且只包含具备性质P(x)的对象。令P(x)=(x∉x),即x为不包含自己的集合,大多数集合都不包含自己,包含自己的集合很难想象,只是理论上不排除它的存在而已,则根据概括公理有:x∈R⇔x∉x。又因为R本身也是一个对象,令x=R,则得到背景命题R∈R⇔R∉R,背景命题为真因为它是推出来的。因为R∉R=¬(R∈R),所以背景命题就是悖论情形A⇔¬A。所以罗素悖论是朴素集合论的一个悖论。因为有罗素悖论,所以现代的集合论去掉了概括公理,而且将集合限制在一个很小的范围内,从而解决了悖论的问题。尽管集合被限制在一个很小的范围内,但已足以表示数学的基本要素,如数、形等,所以现代集合论仍可以作为数学的基础。再举一个理发师悖论的例子,小城里的理发师放出豪言:他要为,而且只为,小城里所有不为自己刮脸的人刮脸。但问题是,理发师该给自己刮脸吗?在这里A=“理发师给自己刮脸”,L=“普通逻辑”,就是大家根据常理而使用的逻辑,E有两个命题,一个是E1=“理发师给理发师刮脸”⇔“理发师给自己刮脸”,这是个真命题因为“理发师”就是“自己”,也说明我们不区分“理发师在家里的水房里给自己刮脸”和“理发师在他的营业厅里给理发师刮脸”。另一个命题是E2=“理发师给小城里的任意一人刮脸”⇔(¬“该任意一人给自己刮脸”),该命题被认为是真的因为它是理发师的豪言,而且一般也认为它可以为真。因为理发师是小城里的某人,因此由E2将“理发师”代入“小城里的任意一人”,可得“理发师给理发师刮脸”⇔(¬“理发师给自己刮脸”),再根据E1修改等价关系的左边可得“理发师给自己刮脸”⇔(¬“理发师给自己刮脸”),这就是最终归结出的A⇔¬A的悖论情形。理发师悖论是否逻辑悖论取决于E2在普通逻辑中是否为真。理发师的豪言是一个全称命题。全称命题为真当且仅当将所有小城里的人逐个代入命题中“小城里的任意一人”时都为真,否则为假。现将理发师代入时得到A⇔¬A。我们正在验证A⇔¬A是否为真,而并没有推出A⇔¬A为真,因此普通逻辑并没有保证A⇔¬A为真。当逻辑系统不能证明A⇔¬A为真时,它是个假命题,因为等价关系两边不一致(如果逻辑系统可以证明,那就是逻辑系统有问题,因为它推出了一个应该是假的命题)。因此,理发师的豪言实际上是一个假命题,是由于理发师忽略了他的豪言对自己不成立造成的。所以理发师悖论不是一个逻辑悖论。或者说普通逻辑在这里并没有问题,还是可靠的。那为什么一般会认为E2可以为真呢?这其实是一种由于忽略而造成的错觉。有一种命题,没有确定的真值,可真可假,叫做自由命题。例如,“某人给自己刮脸”,它的真值取决于该某人的意愿,因此可真可假。另一个例子是“命题M”,而没有具体说明M是什么,它也是一个自由命题。对于一个等价关系命题F⇔G,如果命题F和命题G都不是自由命题,而有确定的真值,那么该等价关系是否为真取决于F和G的真值。如果它们的真值一致,则该等价关系命题为真,否则为假。但如果F和G中至少有一个为自由命题,则该等价关系命题总为真,因为无非是其中的一个自由命题失去了它的自由度,不再自由了。如果F和G都是自由命题,则只剩下一个自由度了。在理发师悖论里,F=“理发师给小城里的任意一人刮脸”和G=(¬“该任意一人给自己刮脸”)都是自由命题,因此人们习惯地就接受理发师的豪言E2=“理发师给小城里的任意一人刮脸”⇔(¬“该任意一人给自己刮脸”)为真命题了,无非是理发师牺牲了他的自由度而已。人们忽略的情况是,F和G可能出现反相关的情况,即在某种情况下会发生F⇔(¬G)的可能性。而这正是将“理发师”代入“小城里的任意一人”所发生的情况。如果F和G反相关,等价命题F⇔G是不能成立的,因为等价关系两边不一致。因此,人们是在忽略了一种特殊情况后根据习惯接受了一个假命题,所以才以为这是一个悖论。当然,认为理发师悖论是一个真正的悖论的观点还有一种理由:理发师的豪言无非是定义了一个性质f(x)=“x是由理发师给他刮脸的”;而性质g(x)=“x是自己给自己刮脸的”是一个按常理可能被定义的性质,例如,做一个调查,将每个人是否给自己刮脸确定下来就可以了;理发师的豪言所定义的f(x)是:f(x)⇔(¬g(x));该定义是用一个性质定义另一个性质,也没有什么问题;因此,理发师悖论也是一个关于定义的悖论。的确,人们目前对如何进行正确的定义还没有透彻的认识。还存在另一些关于性质定义的悖论就是证明。但是,理论上对于用以定义的命题都必须是可以被证明的真命题这一点还是有共识的。如果含不能被证明的命题,则不应当以定义的形式进行定义,而应以公理的形式进行定义。集合论中关于集合相等的定义不是由一个定义给出,而是由一个叫做外延公理的公理给出的就是一个例子。而理发师的豪言用一个似乎可能为真,但实际上却为假的命题来进行定义,这自然就不合规了。悖论情形A⇔¬A中的A是一个自由命题,但由于等价关系两边的命题是反相关的,所以等价关系不能成立。理发师悖论的教训是:在作出等价关系命题时,一定要检查等价关系的两边是否存在反相关的情况,或者附加上当等价关系的两边不存在反相关的条件。这就像在做除法时,一定要检查除数不为0一样。在一个逻辑系统中,公理和定义经常带有等价关系命题,忽略了相关性检查,就可能导致悖论。罗素悖论的直接原因就是由于概括公理的等价关系出现了反相关。说谎者悖论也是因为语义定义中的等价关系出现了反相关。那么是否可以不去掉概括公理,而只对概括公理中的性质加以限制,保证不出现反相关的情况,从而解决罗素悖论呢?这样做确实可以消除罗素悖论,但并不足以解决集合论的问题。矛盾仍然可能由集合运算而产生。因此,集合论的问题有更深层的原因,而人们还不知道是什么原因。这是为什么现代集合论除了去掉概括公理,还要把集合限制在很小范围内的原因。逻辑系统不能有矛盾。因此,如果存在悖论,则说明逻辑系统有问题,应当通过修改逻辑系统以消除悖论。例如现代集合论通过修改自己避免了悖论。尽管现代集合论仍可作为数学的基础,但与朴素集合论相比,已经失去了许多内容。例如,把一个班的学生看成一个集合就没有现代集合论的根据。因此,集合论悖论的问题并没有得到真正解决。由于还存在一些古老的悖论,如“说谎者悖论”,所以有人认为悖论是不可避免的。但笔者认为,悖论是证明逻辑系统有问题的一个反例,它的存在只说明逻辑系统有问题。一旦找到了逻辑系统的更好的定义,悖论是可以被彻底解决的。因此悖论不是不可避免的。“说谎者悖论”说明人们对语义的认识还不够。集合论悖论说明人们对集合的认识还不够。总有一天,它们都是可以被解决的。

相关

  • RNA核糖核酸(英语:Ribonucleic acid),简称RNA,是一类由核糖核苷酸通过3',5'-磷酸二酯键聚合而成的线性大分子。自然界中的RNA通常是单链的,且RNA中最基本的四种碱基为A(腺嘌呤)、U(尿嘧
  • 医学遗传学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医学遗传学(英语:medical genetics)是将
  • 闭锁不全二尖瓣闭锁不全(Mitral insufficiency,或mitral regurgitation,简称MR或MI),是描述心脏二尖瓣在心室收缩期间无法完全闭合的现象。此疾病会导致左心室的血液经二尖瓣逆流(英语:Regu
  • E. J. Corey艾里亚斯·詹姆斯·科里(英语:Elias James Corey,1928年7月12日-),美国有机化学家,有机合成化学领域的一代宗师,也是一个备受争议的人物。1990年诺贝尔化学奖得主,得奖原因是“发展了
  • 雨季雨季,指在降水量有显著季节差异的地区,年降水量主要发生的月份,通常持续一个或多个月 。拥有雨季的地区分布在热带和亚热带。根据柯本气候分类法,对于热带气候,雨季定义为平均降
  • 噪音噪音,又称噪声,从物理角度上看,是声波的频率、强弱变化无规律、杂乱无章的声音。绝大部分噪音都是准随机波,如果符合数学上的随机过程,那就属于白噪声:55。噪音是令人生理或心理
  • 苔原气候苔原气候是极地气候两大类型之一,在柯本气候分类法中标记为ET。北半球主要分布于亚洲、欧洲及北美的北冰洋沿岸地区;南半球同纬度地区为海洋所覆盖,除南极洲沿海个别岛屿以外,基
  • AMP一磷酸腺苷(英文:Adenosine monophosphate,简称AMP),又名5'-腺嘌呤核苷酸或腺苷酸,是一种在核糖核酸(RNA)中发现的核苷酸。它是一种磷酸及核苷腺苷的酯,并由磷酸盐官能团、戊糖核酸糖
  • 廊开府廊开府(泰语:จังหวัดหนองคาย,皇家转写:Changwat Nong Khai,泰语发音:)为泰国东北部之一个府。该府原名为“曼派村”,原属老挝的“万象城”统治。拉达那哥欣王国时代,该
  • 伊斯兰教伊斯兰哲学(阿拉伯语:الفلسفة الإسلامية)是伊斯兰研究的一部分。它长久以来尝试在信念、理性或哲学、伊斯兰教的宗教教学之间取得协调。一个参与伊斯兰哲学的