乱数斐波那契数列是一个类似斐波那契数列的数列,由以下的递回关系式所定义:
其中正负号是依乱数决定,几率各是1/2,每次的正负号有统计独立性。
依照Harry Kesten及Hillel Fürstenberg的理论,这类的乱数递回关系式会依某种指数增长的方式增长,但其增长的速率很难具体的计算出来,1999年时Divakar Viswanath证明乱数斐波那契数列的增长速率为1.1319882487943…(OEIS中的数列A078416),此常数后来也被命名为Viswanath常数。
乱数斐波那契数列是一个类似斐波那契数列的数列,由以下的递回关系式所定义:
其中正负号是依乱数决定,几率各是1/2,每次的正负号有统计独立性。
依照Harry Kesten及Hillel Fürstenberg的理论,这类的乱数递回关系式会依某种指数增长的方式增长,但其增长的速率很难具体的计算出来,1999年时Divakar Viswanath证明乱数斐波那契数列的增长速率为1.1319882487943…(OEIS中的数列A078416),此常数后来也被命名为Viswanath常数。