K-L变换

✍ dations ◷ 2025-01-04 06:01:04 #K-L变换

K-L转换(Karhunen-Loève Transform)是建立在统计特性基础上的一种转换,它是均方差(MSE, Mean Square Error)意义下的最佳转换,因此在资料压缩技术中占有重要的地位。

K-L转换名称来自Kari Karhunen和Michel Loève。

K-L转换是对输入的向量x,做一个正交变换,使得输出的向量得以去除数据的相关性。

然而,K-L转换虽然具有均方差(MSE)意义下的最佳转换,但必须事先知道输入的讯号,并且需经过一些繁杂的数学运算,例如协方差(covariance)以及特征向量(eigenvector)的计算。因此在工程实践上K-L转换并没有被广泛的应用,不过K-L转换是理论上最佳的方法,所以在寻找一些不是最佳、但比较好实现的一些转换方法时,K-L转换能够提供这些转换性能的评价标准。

以处理图片为范例,在K-L转换途中,图片的能量会变得集中,有助于压缩图片,但是实际上,KL转算为input-dependent,即需要对每张输入图片存下一个转换机制,每张图都不一样,这在实务应用上是不实际的。

KL转换属于正交转换,其处输入讯号的原理如下:

对输入向量 x {displaystyle mathbf {x} } 做KL传换后,输出向量 X {displaystyle mathbf {X} } 之元素间( u 1 u 2 {displaystyle u_{1}neq u_{2}} , u 1 {displaystyle u_{1}} u 2 {displaystyle u_{2}} X {displaystyle mathbf {X} } 之元素的index)的相关性为零,即: E X ¯ ) ( X X ¯ ) ] = 0 {displaystyle E-{bar {X}})(X-{bar {X}})]=0}

展开上式并做消去:

E X ] X ¯ X ¯ = 0 {displaystyle EX]-{bar {X}}{bar {X}}=0}

如果 x ¯ = 0 {displaystyle {bar {x}}=0} ,因为KL转换式线性转换的关系, X ¯ = 0 {displaystyle {bar {X}}=0} ,则可以达成以下式,所以这里得输入向量 x {displaystyle mathbf {x} } 之平均值 x ¯ {displaystyle {bar {x}}} 需为 0 {displaystyle 0} ,所以KLT是专门用于随机程序的分析:

E X ] = 0 {displaystyle EX]=0}

其中 u 1 u 2 {displaystyle u_{1}neq u_{2}} ,即输出向量不同元素相关性为 0 {displaystyle 0}

回到矩阵表示形式,令 K {displaystyle mathbf {K} } 为KL转换矩阵,使:

X = K x {displaystyle mathbf {X} =mathbf {Kx} }

K {displaystyle mathbf {K} } x {displaystyle mathbf {x} } 表示 X {displaystyle mathbf {X} } 之covariance矩阵:

E = E = K E K T {displaystyle E=E=mathbf {K} Emathbf {K} ^{T}}

因为 x ¯ = 0 {displaystyle {bar {x}}=0} E {displaystyle E} 直接等于covariance矩阵:

E = K C K T {displaystyle E=mathbf {K} mathbf {C} mathbf {K} ^{T}}

其中 C {displaystyle mathbf {C} } x {displaystyle mathbf {x} } 之covariance矩阵。

如果要使 E X ] = 0 {displaystyle EX]=0} ,则 E {displaystyle E} 必须为对角线矩阵,即对角线上之值皆为 0 {displaystyle 0} ,所以 K {displaystyle mathbf {K} } 必须将传换成对角线矩阵,即 K {displaystyle mathbf {K} } 的每一行皆为 C {displaystyle mathbf {C} } 之特征向量。

K-L转换的目的是将原始数据做转换,使得转换后资料的相关性最小。若输入数据为一维:

y = n = 0 N 1 K x {displaystyle y=sum _{n=0}^{N-1}Kx}

K = e n {displaystyle K=e_{n}}

其中en为输入讯号x共变异数矩阵(covariance matrix)Cx的特征向量(eigenvector)

若输入讯号x为二维:

y = m = 0 M 1 n = 0 N 1 K K x {displaystyle y=sum _{m=0}^{M-1}sum _{n=0}^{N-1}KKx}

二维之K-L转换推导系自原先输入信号之自协方矩阵

C x i x j = E {displaystyle C_{x_{i}x_{j}}=E}

亦即

C x i x j = E E E E E E E E E E E E E a i n E E E E E ] {displaystyle C_{x_{i}x_{j}}={begin{bmatrix}E&E&E&dots &E&dots &E\E&E&E&dots &E&dots &E\vdots &vdots &vdots &ddots &vdots &ddots &vdots \E&E&E&dots &E&dots &a_{in}\vdots &vdots &vdots &ddots &vdots &ddots &vdots \E&E&E&dots &E&dots &Eend{bmatrix}}}

而得,此处假设输入信号x已经先减去平均值。

而当输入彼此具高度相关性,如影像等,则可假设其在水平与垂直方向上得以被分离,并以水平与垂直之相关系数 ρ H , ρ V {displaystyle rho _{H},rho _{V}} 加以表示

假设 x i {displaystyle x_{i}} x j {displaystyle x_{j}} 之水平和垂直距离分别为 h , v {displaystyle h,v}

E = ρ H h ρ V v {displaystyle E=rho _{H}^{h}cdot rho _{V}^{v}}

以一3x2之输入 X = {displaystyle X={begin{bmatrix}x1&x2&x3\x4&x5&x6end{bmatrix}}} 为例

此时 C x i x j = {displaystyle C_{x_{i}x_{j}}={begin{bmatrix}1&rho _{H}&rho _{H}^{2}&rho _{V}&rho _{H}rho _{V}&rho _{H}^{2}cdot rho _{V}\rho _{H}&1&rho _{H}&rho _{H}rho _{V}&rho _{V}&rho _{H}rho _{V}\rho _{H}^{2}rho _{V}&rho _{H}&1&rho _{H}^{2}rho _{V}&rho _{H}rho _{V}&rho _{V}\rho _{V}&rho _{H}rho _{V}&rho _{H}^{2}rho _{V}&1&rho _{H}&rho _{H}^{2}\rho _{H}rho _{V}&rho _{V}&rho _{H}rho _{V}&rho _{H}&1&rho _{H}\rho _{H}^{2}rho _{V}&rho _{H}rho _{V}&rho _{V}&rho _{H}^{2}&rho _{H}&1end{bmatrix}}}

而对于任意尺寸的水平或垂直方向之协方差矩阵可以表示成

C x x = {displaystyle C_{xx}={begin{bmatrix}rho &rho ^{2}&dots &rho ^{N-1}\rho ^{2}&rho &dots &rho ^{N-2}\vdots &vdots &ddots &vdots \rho ^{N-1}&rho ^{N-2}&dots &rho end{bmatrix}}}

可发现其值仅与 | i j | {displaystyle |i-j|} 有关,取其闭合形式,其基底元素 v i j {displaystyle v_{ij}}

v i j = 2 N + λ j sin ( ( 2 i N 1 ) ω 2 + j π 2 ) {displaystyle v_{ij}={sqrt {frac {2}{N+lambda _{j}}}}sin {({frac {(2i-N-1)omega }{2}}+{frac {jpi }{2}})}}

此处 λ j {displaystyle lambda _{j}} C x x {displaystyle C_{xx}} 之特征值

λ j = 1 ρ 2 1 2 ρ cos ω j + ρ 2 {displaystyle lambda _{j}={frac {1-rho ^{2}}{1-2rho ,cos {omega _{j}}+rho ^{2}}}}

其中 tan ( N ω j ) = ( 1 ρ 2 ) sin ω j cos ω j 2 ρ + ρ 2 cos ω j {displaystyle tan(Nomega _{j})=-{frac {(1-rho ^{2})sin {omega _{j}}}{cos {omega _{j}}-2rho +rho ^{2}cos {omega _{j}}}}}

对于不同的输入影像,其 ρ {displaystyle rho } 会有所不同,而若是令 ρ 1 {displaystyle rho rightarrow 1} ,则此转换不必与输入相关,同时继承了K-L转换去除相关性的优异性质。

此时 λ j = { N , if  j = 1 0 , if  j 1 {displaystyle lambda _{j}=left{{begin{matrix}N,&{mbox{if }}j=1\0,&{mbox{if }}jneq 1end{matrix}}right.}

代入上式,得 KLT| ρ 1 {displaystyle rho rightarrow 1} v i j = { 1 N cos ( 2 i 1 ) ( j 1 ) π 2 N , if  j = 1 2 N cos ( 2 i 1 ) ( j 1 ) π 2 N , if  j 1 {displaystyle v_{ij}=left{{begin{matrix}{sqrt {frac {1}{N}}}cos {frac {(2i-1)(j-1)pi }{2N}},&{mbox{if }}j=1\{sqrt {frac {2}{N}}}cos {frac {(2i-1)(j-1)pi }{2N}},&{mbox{if }}jneq 1end{matrix}}right.}

离散余弦转换较K-L转换在实务上较为有利,因其毋须纪录会随输入而改变的转换矩阵

相关

  • 顾崇廉顾崇廉(1931年6月6日-2007年1月15日),中华民国海军二级上将、政治人物,生于江苏无锡,亲民党籍,毕业于海军官校43年班、美国海军战争学院66年班,曾任海军官校校长、海军总司令、副参
  • 陆树德陆树德(1522年-1587年),字与成,别号阜南,榜姓林,直隶松江府华亭县(今上海市松江区)人,明朝政治人物,嘉靖乙丑进士。官至山东巡抚。父林鹄生三子,以家贫,次子树声入赘李氏,幼子树德年十四,复
  • 港埠都市港埠都市(港口都市,日语:港湾都市,英语:port city,德语:Hafenstadt)即人员和货物流动的乘客及物流负责的运输已经形成的点这里的土地和水之间的切换城市。适用于输送水岸,湖岸边,岸边
  • 一名女水手的自白《一名女水手的自白》(),是美国青少年及儿童文学作家Avi,本名爱德华·厄文·华蒂斯(Edward Irving Wortis),于1990所作的小说。该作品曾经得到纽伯瑞儿童文学奖银牌奖。1832年6月16
  • 你是我的命运《你是我的命运》(韩语:너는 내운명,英语:),2005年上映的韩国电影,描述农村青年锡宗遇到茶座服务员银河并共坠爱河的故事,这是一部至纯至美,感人至深的言情电影,本片改编自真人真事。
  • 长臻长臻(?年-1855年),姓张氏,字晴岩,镶黄旗包衣汉军庆筠营领下人,嘉庆二十三年戊寅科翻译举人,充景山官学满洲教习,道光六年(1826年)翻译进士。
  • HattrickHattrick(玩家常用缩写 HT)是一个在线的、基于浏览器的足球管理游戏(MMOG),最早是瑞典人在1997年8月推出的,到现在已有23年历史。目前该游戏包含了118个不同的国家,每个国家都有它
  • 匈牙利空军匈牙利空军(匈牙利语:Magyar Légierő)是隶属于匈牙利国防军的一个军事部门。目前匈牙利境内有3座空军基地,帕波空军基地常驻3架隶属于美国空军的C-17运输机,支援北约战略空运机
  • 韩国外来归化姓氏历史上各个时期都有很多外国人移居和归化入朝鲜民族,带来或创立了新的姓氏或新的姓氏本贯。外国人归化韩国始于三国时期,至隋、唐时期,已经有很多中原汉族移居且归化朝鲜。高丽时代,大量宋人流入朝鲜,包括女真、契丹、越南、蒙古、回纥及阿拉伯等;朝鲜时代,又有来自明朝及日本等的外国人归化朝鲜。归化的动机大多是因为政治避难、海难、传教、投降、救援、商事、躲避战乱和天灾、逃避犯罪、和亲或侍从等原因。入籍的外国姓氏主要分成中国系、蒙古系、女真系、回纥系、阿拉伯系、越南系及日本系等。文化柳氏木川马氏长兴马氏桑谷麻氏烈山麻氏陕
  • 艾哈迈德·比莱克艾哈迈德·比莱克(土耳其语:Ahmet Bilek,1932年3月15日-1970年10月4日),土耳其男子摔跤运动员。他曾代表土耳其参加1960年夏季奥林匹克运动会摔跤比赛,获得男子自由式蝇量级金牌。